MATHEMATICS

STUDY GUIDE

The booklet highlights some salient points for each topic in the CSEC Mathematics syllabus. At least one basic illustration/example accompanies each salient point. The booklet is meant to be used as a resource for "last minute" revision by students writing CSEC Mathematics.

Number Theory	
Basic Rules	
Points to Remember	Illustration/ Example
The sum of any number added to zero gives the same number	The Additive Identity $\begin{aligned} & a+0=0+a=a \\ & 7+0=7 \\ & 0+3.6=3.6 \end{aligned}$
The product of any number multiplied by 1 gives the same number	Multiplicative Identity $\begin{aligned} & a \times 1=1 \times a=a \\ & 7 \times 1=1 \times 7=7 \end{aligned}$
Any number that is multiplied by zero gives a product of zero	$\begin{aligned} & a \times 0=0 \times a=0 \\ & 7 \times 0=0 \times 7=0 \end{aligned}$
The sum (or difference) of 2 real numbers equals a real number	$\begin{aligned} & 4+5=9 \\ & 4+(-5)=-1 \\ & 4.3+5.2=9.5 \end{aligned}$
Zero divided by any number equals zero.	$\begin{aligned} & 0 / 5=0 \\ & 0 / x=0 \quad x \neq 0 \end{aligned}$
Any number that is divided by zero is undefined. The denominator of any fraction cannot have the value zero.	$5 / 0$ is undefined $0 / 0$ is undefined $\mathrm{x} / 0$ is undefined $\mathrm{x} \neq 0$
The Associative Law states The "Associative Laws" say that it doesn't matter how we group the numbers, the order in which numbers are added or multiplied does not affect their sum or product.	$\begin{aligned} & (a+b)+c=a+(b+c) \\ & (6+3)+4=6+(3+4)=13 \\ & \\ & (a \times b) \times c=a \times(b \times c) \\ & (6 \times 3) \times 4=6 \times(3 \times 4)=72 \end{aligned}$
The Commutative Law states that in a set of numbers, multiplication must be applied before addition.	$\begin{aligned} & \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{c}+\mathrm{b}+\mathrm{a}=\mathrm{b}+\mathrm{c}+\mathrm{a} \\ & 2+3+4=4+3+2=3+4+2=9 \\ & \\ & \mathrm{a} \times \mathrm{b} \times \mathrm{c}=\mathrm{c} \times \mathrm{b} \times \mathrm{a}=\mathrm{b} \times \mathrm{c} \times \mathrm{a} \\ & 2 \times 3 \times 4=4 \times 3 \times 2=3 \times 4 \times 2=24 \end{aligned}$
BODMAS provides the key to solving mathematical problems B - Brackets first O - Orders (ie Powers and Square Roots, etc.) DM- Division and Multiplication (left-to-right)	$7+\left(6 \times 5^{2} \times 3\right)$ Start inside Brackets, and then use "Orders" first $=7+(6 \times 25+3)$ Then Multiply $=7+(150+3)$ $=7+(153)$ Then Add $=160$ Final operation is addition DONE!
When positive numbers are added together the result is positive	$4+5=9$
When two or more negative numbers are to be added, we simply add their values and get another negative number	$-4-5=-9$

Number Theory		
Basic Rules		
Points to Remember	Illustration/ Example	
To find the difference between two numbers when one number is positive and one number is negative the result will be " + " if the larger value is positive or "-"" negative if the larger number is negative.	$\begin{aligned} 20-10 & =10 \\ -20+10 & =-10 \end{aligned}$	
When multiplying, two positive numbers multiplied together give a positive product; and a negative number multiplied by another negative number gives a positive product. Also, a negative number multiplied by a positive number gives a negative product	$\begin{aligned} & (+) \times(+)=+ \\ & (-) \times(-)=+ \\ & (+) \times(-)=- \\ & (-) \times(+)=- \end{aligned}$	$\begin{aligned} & \text { e.g. } \\ & \begin{aligned} 8 \times \quad 5 & =40 \\ -8 \times-5 & =40 \\ 8 \times-5 & =-40 \\ -8 \times 5 & =-40 \end{aligned} \end{aligned}$

Number Theory	
Positive and Negative Numbers	
Points to Remember	Illustration/ Example
The rules for division of directed numbers are similar to multiplication of directed numbers. Use manipulatives- counters (yellow and red)	$(+) \div(+)=+$ e.g. $10 \div 5=2$ $(-) \div(-)=+$ $-10 \div-5=2$ $(+) \div(-)=-$ $10 \div-5=-2$ $(-) \div(+)=-$ $-10 \div 5=-2$
There are different type of numbers: Natural Numbers - The whole numbers from 1 upwards Integers- The whole numbers, $\{1,2,3, \ldots\}$ negative whole numbers $\{\ldots,-3,-2,-1\}$ and zero $\{0\}$. Rational Numbers- The numbers you can make by dividing one integer by another (but not dividing by zero). In other words, fractions. Irrational Number - Cannot be written as a ratio of two numbers Real Numbers - All Rational and Irrational numbers. They can also be positive, negative or zero.	Natural Numbers (N) : $\{1,2,3, \ldots\}$ Integers (Z) : $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ Rational Numbers (Q) :. 3/2 (=1.5), 8/4 (=2), 136/100 (=1.36), $-1 / 1000(=-0.001)$ Irrational Number : $\pi, 3.142$ (cannot be written as a fraction) Real Numbers (R): 1.5, $-12.3,99, \sqrt{ } 2, \pi$

Number Theory	
Decimals - Rounding	Illustration/ Example
Points to Remember	5.47 to the tenths place, it can be can be rounded up to
Rounding up a decimal means increasing the	5.5
terminating digit by a value of 1 and drop off the	6.734 to the hundredths place, it can be rounded down to
digits to the right.	6.73
Round down if the number to the right of our	

Number Theory		
Operations with Decimals		
Points to Remember	Illustration/ Example	
Find the product of $3.77 \times 2.8=$? 1. Line up the numbers on the right, 2. multiply each digit in the top number by each digit in the bottom number (like whole numbers), 3. add the products, 4. and mark off decimal places equal to the sum of the decimal places in the numbers being multiplied.	Find the product of 3.77×2.8	
When dividing, if the divisor has a decimal in it, make it a whole number by moving the decimal point to the appropriate number of places to the right. If the decimal point is shifted to the right in the divisor, also do this for the dividend.	Find the quotient. $\begin{array}{r} \begin{array}{r} 5 5 . 3 1 8 \div 3 . 4 \rightarrow 3 . 4 \longdiv { 5 5 . 3 1 8 } \\ 3 . 4 \longdiv { 5 5 . 3 1 8 } \\ 3 . 4 \longdiv { 5 5 . 3 1 8 } \\ -\frac{34}{213} \\ -\frac{204}{91} \\ -\frac{68}{238} \\ \hline \end{array} \\ \text { The quotient is 16.27. } \begin{array}{l} -\frac{238}{0} \end{array} \end{array}$	Write in standard form. Move decimal point in divisor and dividend. Keep dividing until quotient repeats or comes out evenly. Add zeros on right of dividend as needed.
Fractions can always be written as decimals.	For example: $\begin{array}{ll} \frac{2}{5}=0.4 & \frac{1}{2}=0.5 \\ \frac{1}{4}=0.25 & \frac{3}{5}=0.6 \end{array}$	$\begin{aligned} & \frac{3}{4}=0.75 \\ & \frac{3}{4}=0.75 \end{aligned}$

Number Theory	
Binary Numbers	Illustration/ Example
Points to Remember	0001 is 2 to the zero power, or 1 0010 is 2 to the 1 st power, or 2 0100 is 2 to the 2nd power, or 4 1000 is 2 to the 3rd power, or 8
Each digit "1" in a binary number represents a	
power of two, and each "0" represents zero.	
Binary numbers can be added	10001 +11101
Binary numbers can be subtracted	$\underline{101110}$

Number Theory	
Computation - Fractions	Illustration/ Example
Points to Remember	$\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$
When the numerator stays the same, and the denominator increases, the value of the fraction decreases	$\frac{3}{4}, \frac{3}{5}, \frac{3}{6} \frac{3}{7}$
When the denominator stays the same, and the numerator increases, the value of the fraction increases.	$\frac{7}{2}, \frac{8}{2}, \frac{9}{2}$
Equivalent fractions are fractions that may look different, but are equal to each other.	$\frac{1}{2}, \frac{2}{4}, \frac{3}{6} \frac{4}{8}$
Equivalent fractions can be generated by multiplying or dividing both the numerator and denominator by the same number.	$\frac{1}{2}=\frac{1 x 2}{2 \times 2}=\frac{2}{4}$
Fractions can be simplified when the numerator and denominator have a common factor in them	$\frac{3}{5}=\frac{3 x 2}{5 \times 2}=\frac{6}{10}$
Fractions with different denominators, can be converted to a set of fractions that have the same denominator	$\frac{3}{4}, \frac{3}{5}$
Addition and subtraction of fractions are similar to adding and subtracting whole numbers if the fractions being added or subtracted have the same denominator	$\frac{9}{12}-\frac{8}{12}=\frac{1}{12}$
When multiplying fractions, multiply the numerators together and then multiply the denominators together and simplify the results.	$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}=\frac{5}{9}$

Number Theory	
Prime Numbers	
Points to Remember	Illustration/ Example
A prime number is a number that has only two factors: itself and le.g. 5 can only be divided evenly by 1 or 5 , so it is a prime number. Numbers that are not prime numbers are referred to as composite numbers	

Number Theory	
Computation of Decimals, Fractions and Percentages	
Points to Remember	Illustration/ Example
Percent means "per one hundred"	$20 \%=20$ per 100
To convert from percent to decimal, divide the percent by 100	$10 \%=\frac{10}{100}=0.1$
To convert from decimal to percent, multiply the decimal by 100	0.10 as a percentage is $0.10 \times 100=10 \%$ 0.675 is $0.675 \times 100=67.5 \%$
To convert from percentages to fractions, divide the percent by 100 to get a fraction and then simplify the fraction	$12 \%=\frac{12}{100}=\frac{12 \div 4}{100 \div 4}=\frac{3}{25}$
To convert from fractions to percentages, convert the fraction to a decimal by dividing the numerator by the denominator and then convert the decimal to a percent by multiplying by 100.	$\frac{3}{25}=0.12$

Triangles	
Classification of Triangles	Illustration/ Example
Points to Remember	
Triangles can be classified according to lengths of	
their sides to fit into three categories:-	Scalene Triangle
Scalene: No equal sides ;No equal angles	
Isosceles: Two equal sides; Two equal angles	
Equilateral Triangle: Three equal sides ; Three 60° angles	
Obight angle- A triangle that has a right angle (90	

Angles formed by a Transversal Crossing two Parallel Lines			
Vertical Angles are the angles opposite each	Illustration of all angles mentioned on a single other when two lines cross. Vertically opposite angles are equal $\mathrm{a}=\mathrm{d} \quad \mathrm{f}=\mathrm{g}$ $\mathrm{b}=\mathrm{c}$$\quad \mathrm{e}=\mathrm{h}$		
The angles in matching corners are called			
Corresponding Angles.			
Corresponding Angles are equal			
$\mathrm{a}=\mathrm{e} \quad \mathrm{c}=\mathrm{g}$			
$\mathrm{b}=\mathrm{f}$	$\mathrm{d}=\mathrm{h}$		

Triangles

Pythagoras' Theorem
Points to Remember
Pythagoras' Theorem states that the square of the hypotenuse is equal to the sum of the squares on the other two sides

Illustration/ Example
$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
The Hypotenuse is c
Find c

$$
\begin{aligned}
\mathrm{c}^{2} & =5^{2}+12^{2} \\
& =25+144 \\
& =169 \\
c & =\sqrt{169} \\
& =13 \text { units }
\end{aligned}
$$

Triangles

Similar Triangles \& Congruent Triangles

Points to Remember

Definition: Triangles are similar if they have the same shape, but can be different sizes.
(They are still similar even if one is rotated, or one is a mirror image of the other).

There are three accepted methods of proving that triangles are similar:

If two angles of one triangle are equal to two angles of another triangle, the triangles are similar.

If angle $\mathrm{A}=$ angle D and angle $\mathrm{B}=$ angle E
Then $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$

Illustration/ Example

Show that the two triangles given beside are similar and calculate the lengths of sides PQ and PR.

Solution:

$\angle \boldsymbol{A}=\angle \boldsymbol{P}$ and $\angle \boldsymbol{B}=\angle Q, \angle \boldsymbol{C}=\angle \boldsymbol{R}$ (because $\angle \mathrm{C}=180-$
$\angle \mathrm{A}-\angle \mathrm{B}$ and $\angle \mathrm{R}=180-\angle \mathrm{P}-\angle \mathrm{Q})$

Therefore, the two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are similar.

Triangles

Similar Triangles \& Congruent Triangles

Points to Remember

1) If the three sets of corresponding sides of two triangles are in proportion, the triangles are similar.

If

$$
\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}
$$

Then $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$
2) If an angle of one triangle is equal to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.

If angle $\mathrm{A}=$ angle D and

$$
\frac{A B}{D E}=\frac{A C}{D F}
$$

Then $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$

Illustration/ Example

Consequently:
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} \quad$ implies $\quad \frac{A B}{P Q}=\frac{B C}{Q R}$
Substituting known lengths give: $\frac{4}{P Q}=\frac{6}{12}$ or $6 \mathrm{PQ}=4 \times 12$ Therefore PQ $=\frac{12 \times 4}{6}=8$

Also, $\frac{B C}{Q R}=\frac{A C}{P R}$
Substituting known lengths give: $\frac{6}{12}=\frac{7}{P R}$ or $6 \mathrm{PR}=12 \times 7$
Therefore PR $=\frac{12 \times 7}{6}=14$

Find the length $\boldsymbol{A D}(\boldsymbol{x})$

The two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$ appear to be similar since $\mathrm{AB} \| \mathrm{DE}$ and they have the same apex angle C . It appears that one triangle is a scaled version of the other. However, we need to prove this mathematically.
$\mathrm{AB}\|\mathrm{DE}, \mathrm{CD}\| \mathrm{AC}$ and $\mathrm{BC} \| \mathrm{EC}$
$\angle \mathrm{BAC}=\angle \mathrm{EDC}$ and $\angle \mathrm{ABC}=\angle \mathrm{DEC}$

Considering the above and the common angle \boldsymbol{C}, we may conclude that the two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$ are similar.

Triangles

Similar Triangles \& Congruent Triangles

Points to Remember	Illustration/ Example
	Therefore:
$\frac{D E}{A B}=\frac{C D}{C A}$	
	$\frac{7}{11}=\frac{15}{C A}$
	$7 \mathrm{CA}=11 \times 15$
	$\mathrm{CA}=\frac{11 \times 15}{7}$
	$\mathrm{CA}=23.57$
$\mathrm{x}=\mathrm{CA}-\mathrm{CD}=23.57-15=8.57$	

Mensuration	
Areas \& Perimeters	
Points to Remember	Illustration/ Example
The area of a shape is the total number of square units that fill the shape. Area of Square $=a^{2}$ Perimeter of Square $=a+a+a+a$ $a=$ length of side	Find the area and perimeter of a square that has a sidelength of 4 cm Area of Square $=a \times a=a^{2}=4 \times 4=4^{2}=16 \mathrm{~cm}^{2}$ Perimeter of Square $=4+4+4+4=16 \mathrm{~cm}$
a represents the length; \mathbf{b} represents the width Area of Rectangle $=a \times b$ Perimeter of Rectangle $=a+a+b+b=2(a+b)$	Find the area of a rectangle of length 5 cm , width 3 cm Area of Rectangle $=5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$ Perimeter of Rectangle $=5+5+3+3=2(5+3)=16 \mathrm{~cm}$
The area of a triangle is: $\frac{1}{2} \times \mathrm{bxh}$ b is the base h is the height	
Area of triangle using "Heron's Formula"- given all three sides: Step 1: Calculate "s" (half of the triangle's perimeter): $s=\frac{a+b+c}{2}$ Step 2: Then calculate the Area:	Example: What is the area and perimeter of a triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm respectively? Step 1: $s=\frac{3+4+5}{2}=\frac{12}{2}=6$ $\begin{aligned} \text { Step } 2: \text { Area of triangle } & =\sqrt{6(6-3)(6-4)(6-5)} \\ & =\sqrt{6(3)(2)(1)}=6 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Perimeter of triangle } & =\mathrm{a}+\mathrm{b}+\mathrm{c} \\ & =3+4+5=12 \mathrm{~cm} \end{aligned}$

Mensuration	
Areas \& Perimeters	
Points to Remember	Illustration/ Example
$A=\sqrt{s(s-a)(s-b)(s-c)}$	
Area of triangle, given two sides and the angle between them Either Area $=1 / 2 \mathrm{ab} \sin \mathrm{C}$ or \quad Area $=1 / 2 b c \sin A$ or \quad Area $=1 / 2 \mathrm{ac} \sin \mathrm{B}$ Or in general, Area $=1 / 2 \times$ side $1 \times$ side $2 \times$ sine of the included angle	First of all we must decide what we know. We know angle $\mathrm{C}=25^{\circ}$, and sides $\mathrm{a}=7$ and $\mathrm{b}=10$. Start with: Area $=(1 / 2) \mathbf{a b} \sin \mathbf{C}$ Put in the values we know: Area $=1 / 2 \times 7 \times 10 \times \sin \left(25^{\circ}\right)$ Do some calculator work: Area $=35 \times 0.4226=\mathbf{1 4 . 8}$ units $^{2}(1 \mathrm{dp})$
Area of Parallelogram, given two sides and an angle The diagonal of a parallelogram divides the parallelogram into two congruent triangles. Consequently, the area of a parallelogram can be thought of as doubling the area of one of the triangles formed by a diagonal. This gives the trig area formula for a parallelogram: $\begin{array}{ll} \text { Either } & \text { Area }=a b \sin C \\ \text { or } & \text { Area }=b c \sin A \\ \text { or } & \text { Area }=a c \sin B \end{array}$	Find the area of the parallelogram: $\begin{aligned} \text { Area } & =\mathbf{a b} \sin \mathbf{C} \\ & =(8)(6) \sin 120^{\circ} \\ & =41.569=41.57 \text { square units } \end{aligned}$

Mensuration	
Areas \& Perimeters	
Points to Remember	Illustration/ Example
Area of Trapezium $=1 / 2(a+b) \times h$ $=1 / 2($ sum of parallel sides $) \times h$ $h=$ vertical height Perimeter $=a+b+c+d$	Find the area of the trapezium $\begin{aligned} \mathrm{A} & =1 / 2(\mathrm{a}+\mathrm{b}) \times \mathrm{h} \\ & =1 / 2(10+8) \times 4 \\ & =1 / 2 \times(18) \times 4 \\ & =36 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Perimeter } & =\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \\ & =10+8+4.3+4.1 \\ & =26.4 \mathrm{~cm} \end{aligned}$
b Area of Parallelogram $=$ base \times height $\begin{aligned} & \mathrm{b}=\text { base } \\ & \mathrm{h}=\text { vertical height } \end{aligned}$	Find the area of a parallelogram with a base of 12 centimeters and a height of 5 centimeters. $\begin{aligned} & \text { Area of parallelogram }=\mathrm{b} \times \mathrm{h}=12 \mathrm{~cm} \times 5 \mathrm{~cm}=60 \mathrm{~cm}^{2} \\ & \text { Perimeter of parallelogram }=\mathrm{a}+\mathrm{b}+\mathrm{a}+\mathrm{b}=2(\mathrm{a}+\mathrm{b}) \\ & \qquad=12 \mathrm{~cm}+7 \mathrm{~cm}+12 \mathrm{~cm}+7 \mathrm{~cm}=38 \mathrm{~cm} \end{aligned}$

Mensuration	
Surface Area and Volumes	
Points to Remember	Illustration/ Example
$\text { Volume of cone }=\frac{1}{3} \pi r^{2} h$	What is the volume and surface area of a cone with radius 4 cm and slant 8 cm ? Slant Height using Pythagoras' Theorem: $\begin{aligned} \mathbf{h} & =\sqrt{\boldsymbol{s}^{2}-\boldsymbol{r}^{2}} \\ & =\sqrt{8^{2}-4^{2}} \\ & =\sqrt{64-16} \\ & =\sqrt{48} \\ & =6.928 \approx 6.93 \end{aligned}$
The slant of a right circle cone can be figured out using the Pythagorean Theorem if you have the height and the radius. Surface area $=\pi \mathrm{rs}+\pi \mathrm{r}^{2}$	Volume of cone $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times 3.14 \times 4^{2} \times 6.93=116.05 \mathrm{~cm}^{3}$ $\begin{aligned} & \text { Surface area } \\ & =\pi r \mathrm{rs}+\pi \mathrm{r}^{2} \\ & =(3.14 \times 4 \times 8)+\left(3.14 \times 4^{2}\right) \\ & =100.48+50.24 \\ & =150.72 \mathrm{~cm}^{2} \end{aligned}$
Volume of Sphere: $\mathbf{V}=\frac{4}{3} \pi \mathbf{r}^{3}$ Surface area of a sphere: $A=\mathbf{4} \boldsymbol{r}^{\mathbf{2}}$	Find the volume and surface area and of a sphere with radius 2 cm $\begin{aligned} \text { Volume of Sphere } & =\frac{4}{3} \boldsymbol{\pi \mathbf { r } ^ { 3 }} \\ & =\frac{4}{3} \times 3.14 \times 2^{3} \\ & =\frac{100.48}{3} \\ & =33.49 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} \text { Surface Area of Sphere } & =4 \pi \mathrm{r}^{2} \\ & =4 \times 3.14 \times 2^{2} \\ & =50.24 \mathrm{~cm}^{2} \end{aligned}$

Mensuration	
Surface Area and Volumes	
Points to Remember	Illustration/ Example
Volume of cube $=\mathbf{s}^{3}$ $\begin{aligned} \text { Surface Area of cube } & =\mathrm{s}^{2}+\mathrm{s}^{2}+\mathrm{s}^{2}+\mathrm{s}^{2}+\mathrm{s}^{2}+\mathrm{s}^{2} \\ & =\mathbf{6} \mathbf{s}^{2} \end{aligned}$	Find the volume and surface area of a cube with a side of length 3 cm $\begin{aligned} & \text { Volume of cube }=s \times s \times s=s^{3}=3 \times 3 \times 3=27 \mathrm{~cm}^{3} \\ & \text { Surface Area of cube }=s^{2}+s^{2}+s^{2}+s^{2}+s^{2}+s^{2} \\ & =6 \mathrm{~s}^{2}=6(3)^{2}=6 \times 9=54 \mathrm{~cm}^{2} \end{aligned}$
$\begin{aligned} \text { Volume of cuboid } & =\text { length } \mathrm{x} \text { breadth } \mathrm{x} \text { height } \\ & =x y z \end{aligned}$ $\begin{aligned} \text { Surface area } & =x y+x z+y z+x y+x z+y z \\ & =2 \mathbf{x y}+2 \mathbf{x z}+2 \mathbf{y z} \\ & =2(\mathbf{x y}+\mathbf{x z}+\mathbf{y z}) \end{aligned}$	Find the volume and surface area of a cuboid with length 10 cm , breadth 5 cm and height 4 cm . $\begin{aligned} \text { Volume of cuboid } & =\text { length } \times \text { breadth } \times \text { height } \\ & =10 \times 5 \times 4 \\ & =200 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} \text { Surface Area of cuboid } & =2 x y+2 x z+2 y z \\ & =2(10)(5)+2(10)(4)+2(5)(4) \\ & =100+80+40 \\ & =220 \mathrm{~cm}^{2} \end{aligned}$
The Volume of a Pyramid $=\frac{1}{3} \times[\text { Base Area }] \times \text { Height }$	Find the volume of a rectangular-based pyramid whose base is 8 cm by 6 cm and height is 5 cm . Solution: $\mathrm{V}=\frac{1}{3} \times[\text { Base Area }] \times \text { Height }$

Mensuration	
Surface Area and Volumes	Illustration/ Example
Points to Remember	$=\frac{1}{3} \times[8 \times 6] \times 5$
	$=80 \mathrm{~cm}^{3}$

Geometry	
Sum of all interior angles of a regular polygon	
Points to Remember	Illustration/ Example
The sum of interior angles of a polygon having n sides is ($2 \mathrm{n}-4$) right angles $=(2 n-4) \times 90 .$ Each interior angle of the polygon $=$ $(2 n-4) / n$ right angles. e.g. What is the sum of the interior angles of a triangle	Find the sum of all interior angkes in i) Pentagon ii) Hexagon iii) Heptagon iv) Octagon

| Geometry | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sum of all interior angles of any polygon | | | |
| Illustration/ Example | | | |
| Name | Figure | No. of
 Sides | Sum of interior angles
 $(2 n-4)$ right angles |
| Triangle | Name | | |

Geometry	
Sum of all exterior angles of any polygon	
Points to Remember	Illustration/ Example
Sum of all exterior angles of any polygon $=$ 360° e.g. Find the sum of the exterior angles of: a) a pentagon Answer: 360° b) a decagon Answer: 360° c) a 15 sided polygon Answer: 360° d) a 7 sided polygon Answer: 360°	Find the measure of each exterior angle of a regular hexagon A hexagon has 6 sides, so $n=6$ Substitute in the formula Each Exterior angle $=\frac{360}{n}$ $\begin{aligned} & =\frac{360}{60} \\ & =60^{\circ} \end{aligned}$ The measure of each exterior angle of a regular polygon is 45°. How many sides does the polygon have? Set the formula equal to 45°. Cross multiply and solve for n $\frac{360}{n}=45$ $45 n=360$ $\mathrm{n}=\frac{360}{45}=8$

Geometry

Circle Geometry

Points to Remember
Parts of a Circle

Illustration/ Example

Insert the parts of the circle below:

- Arc - a portion of the circumference of a circle.
- Chord - a straight line joining the ends of an arc.
- Circumference - the perimeter or boundary line of a circle.
- Radius (r) - any straight line from the centre of the circle to a point on the circumference.
- Diameter - a special chord that passes through the centre of the circle. A diameter is a straight line segment from one point on the circumference to another point on the circumference that passes through the centre of the circle.
- Segment - part of the circle that is cut off by a chord. A chord divides a circle into two segments.
- Tangent - a straight line that makes contact with a circle at only one point on the circumference

Geometry	
Circle Geometry	
Points to Remember	Illustration/ Example
	Area of Circle= $\begin{aligned} & =\pi \times \mathrm{r}^{2} \\ & =\frac{22}{7} \times 14 \mathrm{~m} \times 14 \mathrm{~m} \\ & =\frac{22}{7} \times 196 \mathrm{~m}^{2}=616 \mathrm{~m}^{2} \end{aligned}$ Perimeter (Circumference) of circle $\begin{aligned} & =2 \times \pi \times \mathrm{r} \\ & =2 \times \frac{22}{7} \times 14=87.976 \mathrm{~cm}=87.98 \mathrm{~cm} \text { to }(2 \mathrm{dp}) \end{aligned}$
Area of Sector AOB $=\pi \times \mathrm{r}^{2} \times \frac{\theta}{360}$ Length of $\mathrm{Arc} A B=2 \pi \mathrm{r} \times \frac{\theta}{360}$ Perimeter $=\mathrm{BO}+\mathrm{OA}+\operatorname{arc} \mathrm{AB}$	$\begin{aligned} & \text { Area of Sector }=\pi \times \mathrm{r}^{2} \times \frac{\theta}{360} \\ & =\frac{22}{7} \times 12 \times 12 \times \frac{45}{360}=56.55 \text { units }^{2} \end{aligned}$ Arc length $\mathbf{A B}=2 \pi r \times \frac{\theta}{360}$ $\begin{aligned} & =2 \times \frac{22}{7} \times 12 \times \frac{45}{360} \\ & =9.428 \\ & =9.43 \text { units (} 2 \mathrm{dp} \text {) } \end{aligned}$ Perimeter of sector ABC $=\mathrm{BC}+\mathrm{CA}+$ Arc length AB $=12+12+9.43=33.43$ units

Algebra	
Simplifying algebraic expressions	
Points to Remember	Illustration/ Example
Algebraic expressions are the phrases used in algebra to combine one or more variables, constants and the operational ($+-\mathrm{x} /$) symbols. Algebraic expressions don't have an equals $=$ sign. Letters are used to represent the variables or the constants	1) Nine increased by a number x $9+x$
	2) Fourteen decreased by a number p 14 - p
	3) Seven less than a number t $\mathrm{t}-7$
	4) The product of nine and a number, decreased by six $9 m-6$
	5) Three times a number, increased by seventeen $3 a+17$
	6) Thirty-two divided by a number y $32 \div y$
	7) Five more than twice a number $2 n+5$
	8) Thirty divided by seven times a number $30 \div 7 n$

Algebra	
Substitution	
Points to Remember	Illustration/ Example
In Algebra "Substitution" means putting numbers where the letters are	1) If $x=5$, then what is $\frac{10}{x}+4$ $\frac{10}{5}+4=2+4=6$
	2) If $x=3$ and $y=4$, then what is $\mathbf{x}^{\mathbf{2}}+\mathbf{x y}$ $3^{2}+3 \times 4=9+12=21$
	3) If $x=-\mathbf{2}$, then what is $\mathbf{1 - x}+\mathbf{x}^{2}$ $\mathbf{1}-(\mathbf{- 2})+(\mathbf{- 2})^{\mathbf{2}}=1+2+4=7$

Algebra	
Binary Operations	
Points to Remember	Illustration/ Example
A binary operation is an operation that applies to two numbers, quantities or expressions e.g. $a^{*} b=3 a+2 b$	An operation * is defined by $\mathrm{a} * \mathrm{~b}=3 \mathrm{a}+\mathrm{b}$. Determine:
	i) $2 * 4$
	ii) $4 * 2$
Commutative Law	iii) $(2 * 4) * 1$
	iv) $2^{*}(4 * 1)$
Let * be a binary operation.	v) Is * associative?
* is said to be commutative if ,	vi) Is * communicative?
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{b}^{*} \mathrm{a}$	i) $2 * 4=3(2)+4=10$
	ii) $4 * 2=3(4)+2=14$
Associative Law	iii) $(2 * 4) * 1=10 * 1=3(10)+1=31$
	iv) $2 *(4 * 1)=2 *[3(4)+1]=2 * 13=3(2)+13=19$
Let * be a binary operation.	v) Since $(2 * 4) * 1 \neq 2 *(4 * 1)$, * is not associative. That is $\left(a^{*} b\right) * c, \neq a^{*}(b * c)$
* is said to be an associative if , $a *(b * c)=(a * b) * c$	vi) Since $2 * 4 * \neq 4 * 2$, * is not commutative. That is $a^{*} b \neq b^{*} a$

Algebra	
Solving Linear Equations	
Points to Remember	Illustration/ Example
An equation shows the link between two expressions	1)Solve $2 x+6=10$ $\begin{aligned} 2 \mathrm{x}+6 & =10 \\ 2 \mathrm{x} & =10-6 \\ 2 \mathrm{x} & =4 \\ x & =\frac{4}{2} \\ x & =2 \end{aligned}$ 2) Solve $5 x-6=3 x-8$ $\begin{array}{ll} 5 x-6 & =3 x-8 \\ 5 x-3 x & =-8+6 \\ 2 x \quad & =-2 \\ x & =\frac{-2}{2} \\ x & =-1 \end{array}$

Algebra	
Linear Inequalities	
Points to Remember	Illustration/ Example
*Solving linear inequalities is almost exactly like solving linear equations * When we multiply or divide by a negative number, we must reverse the inequality Why? For example, from 3 to 7 is an increase, but from -3 to -7 is a decrease The inequality sign reverses (from < to >)	1) Solve $\begin{aligned} x+3 & <0 \\ x & <-3 \end{aligned}$ 2) $\begin{aligned} 3 y & <15 \\ y & <\frac{15}{3} \\ y & <5 \end{aligned}$ 3) $\begin{aligned} & (x-3) / 2<-5 \\ & (x-3)<-10 \\ & x<-7 \end{aligned}$ 4) $-2 y<-8$ divide both sides by $-2 \ldots$ and reverse the inequality $\begin{aligned} & y>\frac{-8}{-2} \\ & y>4 \end{aligned}$

Algebra	
Changing the Subject of a Formula	
Points to Remember	Illustration/ Example
Formula means Relationship between two or more variables Example: $\mathrm{y}=\mathrm{x}+5$ where x and y are variables. Subject Of A Formula means The variable on its own, usually on the left hand side. Example: y is the subject of the formula $\mathrm{y}=\mathrm{x}+5$ Changing The Subject Of A Formula means Rearrange the formula so that a different variable is on its own. Example: Making x the subject of the formula $y=x+5 \text { gives } x=y-5$	Make x the subject of the formula $\begin{aligned} & y=x+5 \\ & x+5=y \\ & x \quad=y-5 \end{aligned}$ Make x the subject of the formula $y=3 x-6$ Switch sides $\begin{aligned} & 3 x-6=y \\ & 3 x=y+6 \\ & x=\frac{y+6}{3} \end{aligned}$ Make x the subject of the formula $y=2(x+5)$ switch sides $2(x+5)=y$ Multiply out brackets $2(x)+2(5)=y$

Algebra	
Solving Simultaneous Equations (Linear and Quadratic)	
Points to Remember	Illustration/ Example
	Solve simultaneously: $2 x+y=7$ $\begin{equation*} x^{2}-x y=6 \tag{1} \end{equation*}$ From Eq.(1), $\begin{align*} 2 x+y & =7 \tag{2}\\ y & =7-2 x \end{align*}$ Substituting this value of y into Eq. (2) $\begin{aligned} & x^{2}-x(7-2 x)-6=0 \\ & x^{2}-7 x+2 x^{2}-6=0 \\ & 3 x^{2}-7 x-6=0 \\ & (3 x+2)(x-3)=0 \\ & x=\frac{-2}{3} \text { or } x=3 \end{aligned}$ Using Eq. 1, when $\mathrm{x}=\frac{-2}{3}$ $\begin{aligned} y & =7-2\left(\frac{-2}{3}\right) \\ & =7+\left(\frac{4}{3}\right) \\ & =\frac{25}{3} \end{aligned}$ When $\mathrm{x}=3$ $\begin{aligned} \mathrm{y} & =7-2(3) \\ & =7-6 \\ & =1 \end{aligned}$ Solutions: $\left(\frac{-2}{3}, \frac{25}{3}\right)$ or $(3,1)$
Solving a pair of equations in two variables (linear and quadratic) Use graphs to find solutions to simultaneous equations $\begin{aligned} & y=x^{2}-5 x+7 \ldots \text { eq. (1) } \\ & y=2 x+1 \ldots \text { eq. (2) } \end{aligned}$ Set them equal to each other $\begin{aligned} & x^{2}-5 x+7=2 x+1 \\ & x^{2}-5 x-2 x+7-1=0 \\ & x^{2}-7 x+6=0 \\ & (x-1)(x-6)=0 \\ & x=1 \text { and } x=6 \end{aligned}$ Substitute into eq. (2) When $\mathrm{x}=1 ; \mathrm{y}=2(1)+1=3$ $x=6 ; y=2(6)+1=13$ Solutions $(1,3)$ and $(6,13)$	

Algebra	
Product of two brackets	
Points to Remember	Illustration/ Example
Find the product of two algebraic expressions using the distributive law $\begin{aligned} (\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d}) & =\mathrm{a}(\mathrm{c}+\mathrm{d})+\mathrm{b}(\mathrm{c}+\mathrm{d}) \\ & =a c+a d+b c+b d \end{aligned}$ $\begin{aligned} (\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d}+\mathrm{e}) & =\mathrm{a}(\mathrm{c}+\mathrm{d}+\mathrm{e})+\mathrm{b}(\mathrm{c}+\mathrm{d}+\mathrm{e}) \\ & =\mathrm{ac}+\mathrm{ad}+\mathrm{ae}+\mathrm{bc}+\mathrm{bd}+\mathrm{be} \end{aligned}$	By applying the distributive law $\begin{aligned} (x+4)(x+3) & =x(x+3)+4(x+3) \\ & =x^{2}+3 x+4 x+12 \\ & =x^{2}+7 x+12 \end{aligned}$

Algebra	
Solving quadratic inequalities	
Points to Remember	Illustration/ Example
To solve a quadratic inequality: 1) Find the values of x when $y=0$ 2) In between these values of x, are intervals where the y values are either greater than zero (>0), or less than zero (<0) 3) To determine the interval either: Draw the graph or Pick a test value to find out which it is (>0 or <0)	Solve $-x^{2}+4<0$ Find out where the graph crosses the x -axis $\begin{aligned} & -x^{2}+4=0 \\ & x^{2}-4=0 \\ & (x+2)(x-2)=0 \\ & x=-2 \text { or } x=2 \end{aligned}$ To solve the original inequality, I need to find the intervals where the graph is below the axis i.e the y values are less than zero. Then the solution is clearly: $\mathrm{x}<-2$ or $\mathrm{x}>2$

Relations, Functions and Graphs		
Relations and Functions		
Points to Remember	Illustration/ Example	
 This graph shows a function, because there is no vertical line that will cross this graph twice.		This is a function. There is only one y for each x; there is only one arrow coming from each x.
This graph does not show a function, because any number of vertical lines will intersect this oval twice. For instance, the y - axis intersects (crosses) the line twice.		This is a function! There is only one arrow coming from each x; there is only one y for each x
* A relation is a set of ordered pairs in which the first set of elements is called the domain and the second set of elements the range or co-domain * Relations can be expressed in three ways: as expressions; as maps or diagrams; or as graphs	domain range	This one is not a function: there are two arrows coming from the number 1 ; the number 1 is associated with two different range elements. So this is a relation, but it is not a function.
*A function is a mathematical operation that assigns to each input number or element, exactly one output number or value * Maximum and minimum points on a graph are found where the slope of the curve is zero Given the graph of a relation, if you can draw a vertical line that crosses the graph in more than	$\begin{array}{cc} \text { domain } & \text { range } \\ -3 \longrightarrow-6 \\ -2 \longrightarrow \\ -1 \longrightarrow \\ 0 \longrightarrow \\ 1 \longrightarrow \\ 1 & \longrightarrow \end{array}$	Each element of the domain has a pair in the range. However, what about that 16 ? It is in the domain, but it has no range element that corresponds to it! This is neither a function nor a relation

Relations, Functions and Graphs
Composite Functions \& Inverses

Points to Remember
"Function Composition" is applying one function

The result of $f()$ is sent through $g()$
It is written: $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})$
Which means: $g(f(x))$

Illustration/ Example

Given $f(x)=2 x+3$ and $g(x)=-x^{2}+5$, find $(f 0 g)(x)$.
$(f \circ g)(x)=f(g(x))$

$$
\begin{aligned}
& =f\left(-x^{2}+5\right) \\
& =2(\quad)+3 \text {... setting up to insert the input formula } \\
& =2\left(-x^{2}+5\right)+3 \\
& =-2 x^{2}+10+3 \\
& =-2 x^{2}+13
\end{aligned}
$$

Given $f(x)=2 x+3$ and $g(x)=-x^{2}+5$, find $(g$ of $)(x)$.

$$
\begin{aligned}
& (g \text { of })(x)=g(f(x)) \\
& \quad=g(2 x+3) \\
& \quad=-(\quad)^{2}+5 \quad \ldots \text { setting up to insert the input } \\
& \quad=-(2 x+3)^{2}+5 \\
& \quad=-\left(4 x^{2}+12 x+9\right)+5 \\
& \quad=-4 x^{2}-12 x-9+5 \\
& \quad=-4 x^{2}-\mathbf{1 2 x}-4
\end{aligned}
$$

Find $(f 0 g)(2)$ using $(f 0 g)(x)=-2 x^{2}+13$
$(f \circ g)(2)=-2(2)^{2}+13=-8+13=5$
OR
Find $g(2)=-2^{2}+5=-4+5=1$
Then $\mathrm{f}[\mathrm{g}(2)]=2(1)+3=5$
Given $f(x)=2 x-1$ and $g(x)=\left(\frac{1}{2}\right) x+4$,
find
i) $\quad \mathrm{f}^{-1}(\mathrm{x})$,
ii) $\quad g^{-1}(x)$,
iii) $\quad(\mathrm{f} \circ \mathrm{g})^{-1}(\mathrm{x})$, and
iv) $\quad\left(\mathrm{g}^{-1} \mathrm{of}^{-1}\right)(\mathrm{x})$.

First, find $f^{-1}(x), g^{-1}(x)$, and $(f \circ g)^{-1}(x)$:
Inverting $f(x): \mathbf{f}(\mathbf{x})=2 \mathrm{x}-1$

$$
\begin{aligned}
& \text { Let } \quad y=2 x-1 \\
& \text { Interchange } \quad \mathrm{x}=2 \mathrm{y}-1 \\
& \text { Make } \mathrm{y} \text { the subject } \\
& \mathrm{x}+1=2 \mathrm{y} \\
& \frac{\mathrm{x}+1}{2}=\mathrm{y} \\
& \text { Hence, } \\
& \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+1}{2} \\
& \hline
\end{aligned}
$$

Relations, Functions and Graphs	
Composite Functions \& Inverses	
Points to Remember	Illustration/ Example
	Inverting $g(x): g(x)=\frac{1}{2} x+4$ Let $y=\frac{1}{2} x+4$ Interchange $\quad x=\frac{1}{2} y+4$ Make y the subject $\begin{aligned} & x-4=\frac{1}{2} y \\ & 2(x-4)=y \\ & 2 x-8=y \end{aligned}$ Hence $\mathrm{g}^{-1}(\mathrm{x})=2 \mathrm{x}-8$ Finding the composite function: $\begin{aligned} & (f \circ g)(x)=f[g(x)]=f\left[\frac{1}{2} x+4\right] \\ & =2\left[\frac{1}{2} x+4\right]-1=x+8-1=x+7 \end{aligned}$ Inverting the composite function: $\begin{aligned} & (f \circ g)(x)=x+7 \\ & \text { Let } \quad y=x+7 \end{aligned}$ Interchange $x=y+7$ Make y the subject $x-7=y$ $(f \circ g)^{-1}(x)=x-7$ Now compose the inverses of $f(x)$ and $g(x)$ to find the formula for $\left(g^{-1} o f^{-1}\right)(x)$: $\begin{aligned} & \left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}\left[f^{-1}(x)\right] \\ & =g^{-1}\left(\frac{x+1}{2}\right) \\ & =2\left(\frac{x+1}{2}\right)-8 \\ & =(x+1)-8 \end{aligned}$ Hence, $\left(g^{-1} o f^{-1}\right)(x)=x-7$ The inverse of the composition $(f o g)^{-1}(x)$ gives the same result as does the composition of the inverses $\left(g^{-1} \mathrm{o} f^{-1}\right)(x)$. We therefore conclude that $(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)$

Relations, Functions and Graphs

Introduction to Graphs

Points to Remember

Parts of the quadratic graph:
The bottom (or top) of the U is called the vertex, or the turning point. The vertex of a parabola opening upward is also called the minimum point. The vertex of a parabola opening downward is also called the maximum point.

The x-intercepts are called the roots, or the zeros.
To find the x-intercepts, set $a x^{2}+b x+c=0$.
The ends of the graph continue to positive infinity (or negative infinity) unless the domain (the x 's to be graphed) is otherwise specified.

The parabola is symmetric (a mirror image) about a vertical line drawn through its vertex (turning point).

Illustration/ Example

Plot $y=x^{2}-x-12$ for $-4 \leq x \leq 5$

x	$y=x^{2}-x-12$
-4	$(-4)^{2}-(-4)-12=16+4-12=8$
-3	$(-3)^{2}-(-3)-12=9+3-12=0$
-2	$(-2)^{2}-(-2)-12=4+2-12=-6$
-1	$(-1)^{2}-(-1)-12=1+1=12=-10$
0	$(0)^{2}-(0)-12=0-0-12=-12$
1	$(1)^{2}-(1)-12=1-1-12=-12$
2	$(2)^{2}-(2)-12=4-2-12=-10$
3	$(3)^{2}-(3)-12=9-3-12=-6$
4	$(4)^{2}-(4)-12=16-4-12=0$
5	$(5)^{2}-(5)-12=25-5-12=8$

From the graph:

1) The values of x for which $f(x)=0$ are $x=-3$ and $x=4$ (roots or x intercept)
2) The value of x for which $f(x)$ is minimum is $x=$ $\frac{1}{2}$ (line of symmetry)
3) The minimum value of $f(x)=-12.25$

The y-intercept is $-12($ when $x=0 ; y=-12)$

Relations, Functions and Graphs

Introduction to Graphs

Points to Remember

Standard form
A quadratic function is written as $y=a x^{2}+b x+c$

Roots

Can be found by factorization.

It can also be found using the quadratic formula which gives the location on the x -axis of the two roots and will only work if \boldsymbol{a} is non-zero.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Axis of symmetry

$$
\mathrm{x}=\frac{-b}{2 a}
$$

Completing the Square

When $f(x)$ is written in the form $y=a(x-h)^{2}+k$ $(\mathrm{h},-\mathrm{k})$ is the maximum or minimum point

The y-intercept is found by asking the question: When $\mathrm{x}=0$, what is y ?

Illustration/ Example

By Calculation:

1) The values of x for which $f(x)=0$
$\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=-12$
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-1 \pm \sqrt{(-1)^{2}-4(1)(-12)}}{2(1)}$
$x=\frac{-1 \pm \sqrt{1+48}}{2}=\frac{-1 \pm \sqrt{49}}{2}=\frac{-1 \pm 7}{2}$
$\mathrm{x}=\frac{-1+7}{2}=\frac{6}{2}=3$ or $\mathrm{x}=\frac{-1-7}{2}=\frac{-8}{2}=-4$
2) The value of x for which $f(x)$ is minimum
$\mathrm{x}=\frac{-b}{2 a}=\frac{-(-1)}{2(1)}=\frac{1}{2}$
3) The minimum value of $f(x)$

- complete the square or
i.e. write $f(x)$ in the form $y=a(x-h)^{2}+k$
$y=x^{2}-x-12$
$y=x^{2}-x+\left(\frac{1}{2}\right)^{2}-12-\left(\frac{1}{2}\right)^{2}$
$y=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)-12-\frac{1}{4}$
$y=\left(x-\frac{1}{2}\right)^{2}-\frac{49}{4}$
$\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}=\left(\mathrm{x}-\frac{1}{2}\right)^{2}-\frac{49}{4}$
This implies that $\mathrm{h}=\frac{1}{2}$ and $\mathrm{k}=\frac{-49}{4}$
So the minimum value of $f(x)$ is $\frac{-49}{4}$ or -12.25
The minimum point is ($\frac{1}{2}, \frac{-49}{4}$)

4) The y-intercept :

When $\mathrm{x}=0$

$$
y=0^{2}-0-12=-12
$$

Relations, Functions and Graphs	
Non-Linear Relations	
Points to Remember	Illustration/ Example
Exponential functions involve exponents, where the variable is now the power. We encounter non-linear relations in the growth of population with time and the growth of invested money at compounded interest rates	Draw the graph of $\mathrm{y}=2^{\mathrm{x}}$

Relations, Functions and Graphs	
Direct \& Inverse Variation	
Points to Remember	Illustration/ Example
Direct Variation	Example of Direct Variation: If y varies directly as x, and $y=15$ when $x=10$, then what is y when $x=6$?
The statement " y varies directly as x," means that when x increases, y increases by the same factor. $\mathrm{y} \alpha \mathrm{x}$	
Introducing the constant of proportionality, k $y=k x$	Find the constant of proportionality:
	$\mathrm{y} \alpha \mathrm{x}$
	$y=k x$ use (10,15)
	$15=\mathrm{k}(10)$
Other examples of direct variation: The circumference of a circle is directly proportional to its radius.	$\frac{15}{10}=\mathrm{k}$
	$\frac{3}{2}=\mathrm{k}$
	$\overline{2}=\mathrm{k}$
	Therefore the equation becomes $y=\frac{3}{2} x$
	Substitute $x=6$
	$y=\frac{3}{2}(6)$
	$y=9$
	Solution (6, 9)
Inverse Variation Two quantities are inversely proportional if an increase in one quantity leads to a reduction in the other.	If y varies inversely as x, and $y=10$ when $x=6$, then what is y when $x=15$? $\mathrm{y} \alpha \frac{1}{x}$
	$\mathrm{y}=\frac{k}{x}$
	$10=\frac{k}{6}$
	$\mathrm{k}=60$
	Therefore, the equation becomes $\mathrm{y}=\frac{60}{x}$
	$\begin{aligned} & \text { When } x=15 \\ & y=\frac{60}{15}=4 \end{aligned}$
	Solution (6, 4)

Relations, Functions and Graphs

Coordinate Geometry

Points to Remember

a) Length of Line

One can use Pythagorean Theorem ($\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$) to find the length of the third side (which is the hypotenuse of the right triangle):

Length of line $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

b) Mid- point of Line

If you are given two numbers, you can find the number exactly between them by averaging them, by adding them together and dividing by two. If you need to find the point that is exactly halfway between two given points, just average the x values and the y-values

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

c) Gradient of Line

Gradient of the line passing through the points

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right): \\
(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { or } \frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\end{gathered}
$$

Illustration/ Example

A line joins the points $(-2,1)$ and $(1,5)$ find:
a) The length of the line
b) The midpoint of the line
c) The gradient of the line
d) The equation of the line
e) The gradient of any perpendicular to the line
f) The equation of the perpendicular bisector of the line

a) Length of line $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(1--2)^{2}+(5-1)^{2}}$
$=\sqrt{(1+2)^{2}+(4)^{2}}$
$=\sqrt{(3)^{2}+(4)^{2}}$
$=\sqrt{9+16}$
$=\sqrt{25}$
$=5$ units
b) Midpoint of line

$$
\begin{aligned}
& \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-2+1}{2}, \frac{5+1}{2}\right) \\
& =\left(-\frac{1}{2}, \frac{6}{2}\right) \\
& =\left(-\frac{1}{2}, 3\right)
\end{aligned}
$$

Relations, Functions and Graphs	
Linear Programming	
Points to Remember	Illustration/ Example
Linear programming is the process of taking various linear inequalities relating to some situation, and finding the "best" value obtainable under those conditions. A typical example would be taking the limitations of materials and labor, and then determining the "best" production levels for maximal profits under those conditions.	Suppose that the three (3) inequalities are related to some situation. $\left\{\begin{array}{l} x+2 y \leq 14 \\ 3 x-y \geq 0 \\ x-y \leq 2 \end{array}\right\}\left\{\begin{array}{l} y \leq-\frac{1}{2} x+7 \\ y \leq 3 x \\ y \geq x-2 \end{array}\right\}$ These inequalities can be represented on a graph: To draw the line $y=-\frac{1}{2} x+7$: When $\mathrm{x}=0, \mathrm{y}=7$ and when $\mathrm{y}=0, \mathrm{x}=14$ Therefore, coordinates on the line are $(0,7)$ and $(14,0)$ To draw the line $\mathbf{y}=\mathbf{3 x}$ When $\mathrm{x}=0, \mathrm{y}=0$ and say when $\mathrm{x}=2, \mathrm{y}=6$ Coordinates on the line are $(0,0)$ and $(2,6)$ To draw the line $\mathbf{y}=\mathrm{x}-2$ When $\mathrm{x}=0, \mathrm{y}=-2$ and when $\mathrm{y}=0, \mathrm{x}=2$ Coordinates on the line are $(0,-2)$ and $(2,0)$ Suppose the profit is given by the equation "P $=3 x+4 y$ " To find maximum profit: The corner points are $(2,6),(6,4)$, and $(-1,-3)$. For linear systems like this, the maximum and minimum values of the equation will always be on the corners of the shaded region. So, to find the solution simply plug these three points into " $\mathrm{P}=3 x+4 y$ ". $\begin{array}{ll} (2,6): & P=3(2)+4(6)=6+24=30 \\ (6,4): & P=3(6)+4(4)=18+16=34 \\ (-1,-3): & P=3(-1)+4(-3)=-3-12=-15 \end{array}$ Then the maximum of $P=34$ occurs at $(6,4)$, and the minimum of $P=-15$ occurs at $(-1,-3)$.

Relations Functions and Graphs

Distance - Time Graphs

Points to Remember

Speed, Distance and Time
The following is a basic but important formula which applies when speed is constant (in other words the speed doesn't change)

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

If speed does change, the average (mean) speed can be calculated:

$$
\text { Average speed }=\frac{\text { Total Distance }}{\text { Total Time Taken }}
$$

Distance - Time Graphs

These have the distance from a certain point on the vertical axis and the time on the horizontal axis. The velocity can be calculated by finding the gradient of the graph. If the graph is curved, this can be done by drawing a chord and finding its gradient (this will give average velocity) or by finding the gradient of a tangent to the graph (this will give the velocity at the instant where the tangent is drawn).

Illustration/ Example

Example
a) Jane runs at an average speed of $12.5 \mathrm{~m} / \mathrm{s}$ in a race journey of 500 metres. How long does she take to complete the race?

To find a time, we need to divide distance by speed.

$$
500 \text { metres } \div 12.5 \mathrm{~m} / \mathrm{s}=40 \mathrm{secs}
$$

b) Chris cycles at an average speed of $8 \mathrm{~km} / \mathrm{h}$.

If he cycles for $61 / 2$ hours, how far does he travel?
To find a distance, we need to multiply speed by time. $8 \mathrm{~km} / \mathrm{h} \times 6.5$ hours $=52 \mathrm{~km}$

a) Change $15 \mathrm{~km} / \mathrm{h}$ into m / s.

$$
\begin{aligned}
15 \mathrm{~km} / \mathrm{h} & =\frac{15 \mathrm{~km}}{1 \mathrm{hour}} \\
& =\frac{15 \mathrm{~km}}{60 \mathrm{~min}} \\
& =\frac{15000 \mathrm{~m}}{3600 \mathrm{secs}} \\
& =4 \frac{1}{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Units

When using any formula, the units must all be consistent. For example speed could be measured in $\boldsymbol{m} / \boldsymbol{s}$, in terms of distance in metres and time in seconds or in $\boldsymbol{k m} / \boldsymbol{h}$ in terms of distance in kilometres and time in hours.

In calculations, units must be consistent, so if the units in the question are not all the same e.g. m / s, and $\boldsymbol{k m} / \boldsymbol{h}$, then you must first convert all to the same unit at the start of solving the problem.
b) Example If a car travels at a speed of $10 \mathrm{~m} / \mathrm{s}$ for 3 minutes, how far will it travel?
i. Firstly, change the 3 minutes into 180 seconds, so that the units are consistent.
ii. Now rearrange the first equation to get distance $=$ speed \times time .
iii. Therefore distance travelled

$$
=10 \mathrm{~m} \times 180=1800 \mathrm{~m}=1.8 \mathrm{~km}
$$

c) A car starts from rest and within 10 seconds is travelling at $10 \mathrm{~m} / \mathrm{s}$. What is its acceleration?

$$
\text { Acceleration }=\frac{\text { change in velocity }}{\text { time }}=\frac{10}{10}=1 \mathrm{~m} / \mathrm{s}^{2}
$$

d) What is the speed represented by the steeper line?

$$
\text { Speed }=\frac{10-0}{2-0}=\frac{10}{2}=5 \mathrm{~ms}^{-1}
$$

Relations Functions and Graphs

Velocity - Time Graphs

Points to Remember Velocity and Acceleration

Velocity is the speed of a particle and its direction of motion (therefore velocity is a vector quantity, whereas speed is a scalar quantity).

When the velocity (speed) of a moving object is increasing we say that the object is accelerating. If the velocity decreases it is said to be decelerating. Acceleration is therefore the rate of change of velocity (change in velocity / time) and is measured in $\mathrm{m} / \mathrm{s}^{2}$.

Illustration/ Example

Example
Consider the motion of the object whose velocity-time graph is given in the diagram.
a) What is the acceleration of the object between times $t=0$ and $t=2$?
b) What is the acceleration of the object between times $t=10$ and $t=12$?
c) What is the net displacement of the object between times $t=0$ and $t=16$?

Relations Functions and Graphs

Velocity - Time Graphs

Points to Remember
 Velocity-Time Graphs/ Speed-Time Graphs

A velocity-time graph has the velocity or speed of an object on the vertical axis and time on the horizontal axis.
The distance travelled can be calculated by finding the area under a velocity-time graph. If the graph is curved, there are a number of ways of estimating the area.
Acceleration is the gradient of a velocity-time graph and on curves can be calculated using chords or tangents.

A Velocity - Time Graph

The distance travelled is area under graph. The acceleration and deceleration can be found by finding the gradient of the lines.

Illustration/ Example

a) The velocity-time graph is a straight-line between $t=0$ and $t=2$, indicating constant acceleration during this time period. Hence,

$$
a=\frac{\text { change in velocity }}{\text { change in time }}=\frac{8-0}{2}=4 \mathrm{~ms}^{-2}
$$

b) The velocity-time graph graph is a straight-line between $\mathrm{t}=10$ and $\mathrm{t}=12$, indicating constant acceleration during this time period. Hence,

$$
\mathrm{a}=\frac{\text { change in velocity }}{\text { change in time }}=\frac{4-8}{2}=-2 \mathrm{~ms}^{-2}
$$

The negative sign indicates that the object is decelerating.
c) The net displacement between times $\mathrm{t}=0$ and $\mathrm{t}=16$ equals the area under the velocity-time curve, evaluated between these two times. Recalling that the area of a triangle is half its width times its height, the number of grid-squares under the velocity-time :
$=$ Area of triangle + Area of Square + Area of Trapezium + Area of Square
$=\frac{1}{2}(\mathrm{~b})(\mathrm{h})+(\mathrm{s} \mathrm{x} \mathrm{s})+\frac{1}{2}(\mathrm{~h})(\mathrm{a}+\mathrm{b})+(\mathrm{s} \mathrm{x} \mathrm{s})$
$=\frac{1}{2}(2)(8)+(8 \mathrm{x} 8)+\frac{1}{2}(2)(4+8)+(4 \mathrm{x} 4)$
$=8+64+12+16=100 \mathrm{~m}$

Statistics

Frequency Distribution

Displaying data on the Bar Graph

Measure of Central Tendency - Mean, Median and Mode

Points to Remember
The frequency of a particular data value is the number of times the data value occurs

A frequency table is constructed by arranging collected data values in ascending order of magnitude with their corresponding frequencies

The Mean is the average of the numbers. Add up all the numbers, then divide by how many numbers there are

$$
\text { mean }=\frac{\Sigma x f}{\Sigma f}
$$

Illustration/ Example

Rick did a survey of how many games each of 20 friends owned, and got this:
$9,15,11,12,3,5,10,20,14,6,8,8,12,12,18,15,6$, 9, 18, 11
a) Find the Mode
b) Find the Median
c) Show this data in a frequency table
d) Calculate the mean
e) Draw a histogram to represent the data

Statistics

Frequency Distribution

Displaying data on the Bar Graph

Measure of Central Tendency - Mean, Median and Mode

Points to Remember

To find the Median, place the numbers in value order and find the middle number (or the mean of the middle two numbers).

To find the Mode, or modal value, place the numbers in value order then count how many of each number. The Mode is the number which appears most often (there can be more than one mode):

Illustration/ Example

a) Mode is 12 (occurs most often)
b) To find the median, first order the data then find the mean of the $10^{\text {th }}$ and $11^{\text {th }}$ values:
$3,5,6,6,8,8,9,9,10,11,11,12,12,12,14,15,15,18,18,20$
Median $=\frac{11+11}{2}=\frac{22}{2}=11$
c) Frequency table for the number of games owned.

Number of games (x)	Tally	Frequency (f)	xf		
3	\|	1	3		
5	,	1	5		
6	\|		2	12	
8	\|		2	16	
9	\|		2	18	
10	\|	1	10		
11	\|		2	22	
12	\|			3	36
14	\|	1	14		
15	\|		2	30	
18	II	2	36		
20	\|	1	20		
		$\Sigma \mathrm{f}=20$	$\Sigma \mathrm{xf}=222$		

d) mean $=\frac{\Sigma x f}{\Sigma f}=\frac{222}{20}=11.1$
e)

Statistics
 Frequency Distribution
 Displaying data on the Bar Graph
 Measure of Central Tendency - Mean, Median and Mode

Points to Remember

* When the set of data values are spread out, it is difficult to set up a frequency table for every data value as there will be too many rows in the table. So we group the data into class intervals (or groups) to help us organize, interpret and analyze the data.
*The values are grouped in intervals (classes) that have the same width. Each class is assigned its corresponding frequency.

Class Limits

Each class is limited by an upper and lower limit

Class Width

The class width is the difference between the upper and lower limit of that particular class

Class Mark/ Mid-Interval Value

The class mark is the midpoint of each interval and is the value that represents the whole interval for the calculation of some statistical parameters and for the histogram

Estimating the Mode from a Histogram

1. Identify the tallest bar. This represents the modal class.
2. Join the tips of this bar to those of the neighbouring bars on either side, with the one on the left joined to that on the right and vice-versa. The lines used to join these tips cross each other at some point in this bar.
3. Drop a perpendicular line from the tip of the point where these lines meet to the base of the bar (horizontal axis). The point where it meets the base is the mode.

Illustration/ Example

The lengths of ribbon required to wrap 40 presents are as follows:

17	31	23	29	27	37	28	34	42	23
12	22	18	26	24	30	41	14	29	22
21	32	28	19	27	25	38	39	21	40
26	27	26	30	33	20	28	35	29	31

Construct a Grouped Frequency Table for the following data:

Length of Ribbon (cm)	Mid- Interval Value (x)	Frequency (f)	xf
$6-10$	8	0	0
$11-15$	13	2	26
$16-20$	18	4	72
$21-25$	23	8	184
$26-30$	28	14	392
$31-35$	33	6	198
$36-40$	38	4	152
$41-45$	43	2	86
		$\mathbf{\Sigma f = 4 0}$	$\mathbf{\Sigma x f = 1 1 1 0}$

We can estimate the Mean by using the midpoints
mean $=\frac{\Sigma x f}{\Sigma f}=\frac{1110}{40}=27.75$
The median is the mean of the middle two numbers (the $20^{\text {th }}$ and $21^{\text {th }}$ values and they are both in the 26-30 group) ... The median group is 26-30. The median an also be found from a cumulative frequency curve (the second quartile value)

Statistics

Frequency Distribution

Displaying data on the Bar Graph

Measure of Central Tendency - Mean, Median and Mode

Points to Remember

4. Read off the value at the base using the estimation method.

The mode is read off the horizontal axis.
In this case, the mode is $39.5+5.5=45$.
The modal age of visitors is approximately 45 years.
To create a frequency polygon:

- Choose a class interval.
- Then draw an X-axis representing the values of the scores in your data.
- Mark the middle of each class interval with a tick mark, and label it with the middle value represented by the class.
- Draw the Y-axis to indicate the frequency of each class.
- Place a point in the middle of each class interval at the height corresponding to its frequency.
- Finally, connect the points.
- You should include one class interval below the lowest value in your data and one above the highest value.
- The graph will then touch the X-axis on both sides.

Illustration/ Example
The modal group (the group with the highest frequency), which is 26-30. A single value for mode can be found from a histogram.

From the histogram, the mode is 28
Example: Frequency Polygon

Statistics

Cumulative Frequency Curve (Ogive)
Interquartile Range and Semi-Interquartile Range

Points to Remember

A Cumulative Frequency Graph is a graph plotted from a cumulative frequency table. A cumulative frequency graph is also called an ogive or cumulative frequency curve

The total of the frequencies up to a particular value is called the cumulative frequency

The lower quartile or first quartile $\left(\mathrm{Q}_{1}\right)$ is the value found at a quarter of the way through a set of data

The median or second quartile $\left(\mathrm{Q}_{2}\right)$ is the value found at half of the way through a set of data

The upper quartile $\left(\mathrm{Q}_{3}\right)$ is the value found at three quarters of the way through a set of data

The Interquartile range is the difference between the upper and lower quartile: $\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Semi-interquartile range $=1 / 2\left(Q_{3}-Q_{1}\right)$

Illustration/ Example

We need to add a class with 0 frequency before the first class and then find the upper boundary for each class interval

Length $(c m)$	Frequency	Upper Class Boundary	Length $(\boldsymbol{x} \mathbf{~ c m})$	Cumulative Frequency
$6-10$	0	10.5	$x \leq 10.5$	0
$11-15$	2	15.5	$x \leq 15.5$	2
$16-20$	4	20.5	$x \leq 20.5$	6
$21-25$	8	25.5	$x \leq 25.5$	14
$26-30$	14	30.5	$x \leq 30.5$	28
$31-35$	6	35.5	$x \leq 35.5$	34
$36-40$	4	40.5	$x \leq 40.5$	38
$41-45$	2	45.5	$x \leq 45.5$	40
	$\mathbf{\Sigma f = 4 0}$			

$\mathrm{Q}_{1}=23.5$
$\mathrm{Q}_{2}=27.5$
$\mathrm{Q}_{3}=31.5$
Interquartile Range $=$ Q3 $-\mathrm{Q} 1=31.5-23.5=8$
Semi-interquartile Range $=1 / 2(\mathrm{Q} 3-\mathrm{Q} 1)=1 / 2(8)=4$

Consumer Arithmetic
Ready Reckoner
Points to Remember
A ready reckoner is a table of numbers used to facilitate simple calculations, especially one for applying rates of discount, interest, charging, etc., to different sums

Illustration/ Example

The table shows an extract from a ready reckoner giving the price of N articles at 27 cents each.

\mathbf{N}		\mathbf{N}		\mathbf{N}		\mathbf{N}	
$\mathbf{2 1}$	5.67	$\mathbf{6 3}$	17.01	$\mathbf{1 0 5}$	28.35	$\mathbf{5 0 0}$	135.00
$\mathbf{2 2}$	5.94	$\mathbf{6 4}$	17.28	$\mathbf{1 0 6}$	28.62	$\mathbf{5 2 5}$	141.75
$\mathbf{2 3}$	6.21	$\mathbf{6 5}$	17.55	$\mathbf{1 0 7}$	28.89	$\mathbf{5 5 0}$	148.50
$\mathbf{2 4}$	6.48	$\mathbf{6 6}$	17.82	$\mathbf{1 0 8}$	29.16	$\mathbf{6 0 0}$	162.00
$\mathbf{2 5}$	6.75	$\mathbf{6 7}$	18.09	$\mathbf{1 0 9}$	29.43	$\mathbf{6 2 5}$	168.75
$\mathbf{2 6}$	7.02	$\mathbf{6 8}$	18.36	$\mathbf{1 1 0}$	29.70	$\mathbf{6 5 0}$	175.50
$\mathbf{2 7}$	7.29	$\mathbf{6 9}$	18.63	$\mathbf{1 1 1}$	29.97	$\mathbf{7 0 0}$	189.00
$\mathbf{2 8}$	7.56	$\mathbf{7 0}$	18.90	$\mathbf{1 1 2}$	30.24	$\mathbf{7 5 0}$	202.50
$\mathbf{2 9}$	7.83	$\mathbf{7 1}$	19.17	$\mathbf{1 1 3}$	30.51	$\mathbf{8 0 0}$	216.00
$\mathbf{3 0}$	8.10	$\mathbf{7 2}$	19.44	$\mathbf{1 1 4}$	30.78	$\mathbf{9 0 0}$	243.00

Use the table to find the cost of:

1) 23 articles at 27 cents each
2) 571 articles at 27 cents each
3) $61 / 4 \mathrm{~m}$ of material at 27 cents each
4) 72.9 kg of foodstuff at 27 cents per kilogram
5) Directly from the table, the cost is $\$ 6.21$
6) From the table:

Cost of 500 articles $=\$ 135.00$
Cost of 71 articles $=\$ 19.17$
Cost of 571 articles $=\$ 154.17$
3) $6 \frac{1}{4}=6.25$. To use the tables we find the cost of 625 m to be:
$\$ 162.00+\$ 6.75=\$ 168.75$.
Hence the cost of 6.25 m is $\$ \frac{168.75}{100}=\$ 1.69$
4)The cost of 729 kg at 27 cents each is:
$\$ 189.00+\$ 7.83=\$ 196.83$
Hence the cost of 72.9 kg is $\$ \frac{196.83}{10}=\$ 19.68$

Consumer Arithmetic	
Foreign Exchange Rates	
Points to Remember	Illustration/ Example
Foreign exchange, is the conversion of one country's currency into that of another	Amelia is going on a holiday to Italy, so she will have to purchase some euros ($€$). How many euros will she get for $£ 375$ if the exchange rate is $£ 1=$ $€ 1.2769$? Give your answer to the nearest euro. $\begin{aligned} £ 1 & =€ 1.2769 \\ £ 375 & =\frac{1.2769}{1} \times 375 \\ & =\$ 478.8375 \end{aligned}$ Change US\$80 to TT\$, given that TT\$1.00 = US\$6.35 US $\$ 6.35=$ TT\$ 1.00 US $\$ 1.00=\mathrm{TT} \$ \frac{1.00}{6.35}$ US $\$ 6.35=$ TT $\$ \frac{1.00}{6.35} \times 80=$ TT\$ 12.59

Consumer Arithmetic	
Hire Purchase	Illustration/ Example
Points to Remember	A bicycle can be bought for $\$ 160.00$ cash or it can be bought on hire purchase by depositing 25% of the cash price, then paying the balance $+10 \%$ interest per annum (p.a.) on the balance in 12 monthly instalments. regular intervals over a specified period of time bicycle was sold on hire purchase determine the monthly repayments. Sometimes the purchaser may pay a deposit, then the remainder (cash price- deposit + interest) is repaid at a number of regular intervals.
Deposit $=\frac{25}{100} \times 160.00$ Balance $=\$ 160.00-\$ 40.00=\$ 120.00$ Interest on Balance $=\frac{10}{100} \times 120=\$ 12.00$ Total amount still to be paid $=\$ 120.00+\$ 12.00=\$ 132.00$ Monthly repayment $=\frac{132}{12}=\$ 11.00$	

\section*{Consumer Arithmetic

Profit, Loss, Discount

Profit, Loss, Discount

Points to Remember
If an article is sold for more than it cost, then it is said to have been sold at a profit

Profit $=$ Selling Price - Cost Price
Profit \% $=\frac{\text { Profit }}{\text { Cost Price }} \times 100$

$$
=\frac{\text { Selling Price-Cost Price }}{\text { Cost Price }} \times 100
$$

If an article is sold for less than it cost, then it is said to have been sold at a loss

Loss $\%=\frac{\text { Cost Price- Selling Price }}{\text { Cost Price }} \times 100$

Profit is often expressed as a percentage of the cost price. This is called the percentage profit

Percentage discount $=\frac{\text { Marked Price-Selling Price }}{\text { Marked Price }} \times 100$

Illustration/ Example

1) A merchant bought a shirt for $\$ 10.00$ and sold it for $\$ 13.00$.
a) Calculate the Profit
b) Determine the percentage profit

Profit $=$ Selling price - Cost price
$=\$ 13.00-\$ 10.00=\$ 3.00$

$$
\begin{aligned}
\text { Profit } \% & =\frac{\text { Selling Price-Cost Price }}{\text { Cost Price }} \times 100 \\
& =\frac{\text { Profit }}{\text { Cost Price }} \times 100=\frac{3}{10} \times 100=30 \%
\end{aligned}
$$

2) A vase costing $\$ 60.00$ is sold for $\$ 50.00$. Find the percentage loss
Loss $=$ Cost price - Selling price
$=\$ 60.00-\$ 50.00=\$ 10.00$

$$
\begin{aligned}
& \text { Loss } \%=\frac{\text { Cost Price- Selling Price }}{\text { Cost Price }} \times 100 \\
& \quad=\frac{\text { Loss }}{\text { Cost Price }} \times 100=\frac{10}{60} \times 100=16 \frac{2}{3} \%
\end{aligned}
$$

3) A watch priced at $\$ 160.00$ is sold for $\$ 140.00$.
a) Calculate the discount
b) Determine the percentage discount

Discount $=$ Marked Price - Selling Price

$$
=\$ 160.00-\$ 140.00=\$ 20.00
$$

$$
\begin{aligned}
\text { Percentage discount } & =\frac{\text { Marked Price- Selling Price }}{\text { Marked Price }} \times 100 \\
& =\frac{20}{160} \times 100=12 \frac{1}{2} \%
\end{aligned}
$$

4) A house was bought for $\$ 60000$ and is sold for $\$ 75000$. What is the percentage profit?

$$
\begin{aligned}
\text { Profit } \% & =\frac{\text { Profit }}{\text { Cost Price }} \times 100 \\
& =\frac{\text { Selling Price-Cost Price }}{\text { Cost Price }} \times 100 \\
& =\frac{75000-60000}{60000} \times 100=\frac{15000}{60000} \times 100=25 \%
\end{aligned}
$$

Consumer Arithmetic	
Simple Interest	
Points to Remember	Illustration/ Example
Money deposited in a bank will earn interest at the end of the year. The sum of money deposited is called the principal. The interest is a percentage of the principal given by the bank for depositing with it. This percentage is called rate. If interest is always calculated on the original principal, it is called simple interest. Remember to change time given in months to years, by dividing by 12 . $\text { Simple interest }=\frac{\mathbf{P \times R \times T}}{\mathbf{1 0 0}}$	Determine the simple interest on $\$ 460$ at 5% per annum for 3 years. $\text { Simple interest }=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{460 \times 5 \times 3}{100}=\$ 69.00$ Simon wanted to borrow some money to expand his fruit shop. He was told he could borrow a sum of money for 30 months at 12% simple interest per year and pay $\$ 1440$ in interest charges. How much money can he borrow? $\begin{aligned} & \mathrm{T}=\frac{30}{12}=2.5 \text { years } \\ & \mathrm{P}=\frac{\mathrm{SI} \times 100}{\mathrm{R} \times \mathrm{T}}=\frac{1440 \times 100}{12 \times 2.5}=\$ 4800 \end{aligned}$ Determine the time in which $\$ 82$ at 5% per annum will produce a simple interest of $\$ 8.20$ $\text { Time }=\frac{S I \times 100}{P \times T}=\frac{8.20 \times 100}{82 \times 5}=2 \text { years }$

Consumer Arithmetic

Compound Interest

Points to Remember

A sum of money is invested at compound interest, when the interest at the end of the year (or period) is added to the principal, hence increasing the principal and increasing the interest the following year (or period).

The principal plus the interest is called the amount.
For compound interest, the interest after each year is added to the principal and the following year's interest is found from that new principal

Compound Interest: $\mathrm{A}=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$

Illustration/ Example

Calculate the compound interest on $\$ 640$ at 5% per annum for 3 years. What is the Amount after three years?

$1^{\text {st }}$ Principal	640.00
$1^{\text {st }}$ interest $\left(\frac{640 \times 5}{100}=\$ 32\right)$	32.00
$2^{\text {nd }}$ Principal	672.00
$2^{\text {nd }}$ interest $\left(\frac{672 \times 5}{100}=\$ 33.60\right)$	33.60
$3^{\text {rd }}$ Principal	705.60
$3^{\text {rd }}$ Interest $\left.\frac{705.60 \times 5}{100}=\$ 35.28\right)$	35.28
Amount	$\$ 806.48$

The compound interest for 3 years
$=\$ 32.00+\$ 33.60+\$ 35.28=\$ 100.88$
Amount after 3 years is $\$ 806.48$

Consumer Arithmetic
 Mortgages

Points to Remember

A mortgage is a loan to finance the purchase of real estate, usually with specified payment periods and interest rates. The borrower (mortgagor) gives the lender (mortgagee) a right of ownership on the property as collateral for the loan.

Illustration/ Example

1) Tim bought a house for 250,000 . He makes a down payment of 15% of the purchase price and takes a $30-$ year mortgage for the balance.
a) What is Tim's down payment?
b) What is Tim's mortgage?

Downpayment $=$ Percent Down \times Purchase Price

$$
=\frac{15}{100} \times \$ 250,000=\$ 37500
$$

Amount of Mortgage $=$ Purchase Price - Down Payment

$$
=250,000-37500=212500
$$

2) If your monthly payment is 1200 dollars, what is the total interest charged over the life of the loan?

Total Monthly Payment
$=$ Monthly payment $\times 12 \times$ Number of years
$=\$ 1200 \times 12 \times 30=\$ 432000$

Total Interest Paid
= Total Monthly Payment - Amount of Mortgage $=\$ 432000-\$ 212500=\$ 219500$

Consumer Arithmetic

Rates and Taxes

Points to Remember

Taxes are 'calculated' sums of money paid to a government by to meet national expenditures

- e.g. schools, hospitals, salaries, road networks

Gross Salary is the figure before making other deductions.

- Tax-free allowance - Working people do not pay tax on all their income. Part of their earnings is not taxed. A tax-free allowance is made for each dependent. Examples of dependents are : a wife, a young child, old father.
- Taxable income is obtained after the tax-free allowance is subtracted from the gross salary
- Net salary is the take home salary of the employee after paying taxes

Illustration/ Example

Mr. Salandy's salary is $\$ 22000$ per year. He has a personal allowance of $\$ 2000$, a marriage allowance of $\$ 1000$, a child allowance of $\$ 800$, national insurance of $\$ 400$ and an insurance allowance of $\$ 300$. A flat rate of 18% is paid on income tax. Determine his net salary.

$$
\begin{array}{ll}
\text { Personal allowance } & =2000 \\
\text { Marriage allowance } & =1000 \\
\text { Child allowance } & =800 \\
\text { National insurance } & =400 \\
\text { Insurance allowance } & =\underline{300} \\
\text { Total Allowance } & =\underline{4500}
\end{array}
$$

Taxable income $=\$ 22000-\$ 4500=\$ 17500$
Income Tax $\quad=18 \%$ of $\$ 17500=\frac{18}{100} \times 17,500=\$ 3150$.
Net Salary $\quad=\$ 22000-\$ 3150=\$ 18850$

Consumer Arithmetic	
Wages	
Points to Remember	Illustration/ Example
*Basic Week- Number of hours worked per week *Basic Rate- Amount of money paid per hour *Workers are paid wages and salaries. Wages can be paid fortnightly, weekly or daily. *Overtime- The money earned for extra hours beyond the basic week	1) A man works a basic week of 38 hours and his basic rate is $\$ 13.75$ per hour. Calculate his total wage for the week $\begin{aligned} \text { Total wage for week } & =\text { Basic Rate } \times \text { Time } \\ & =13.75 \times 38 \\ & =\$ 522.50 \end{aligned}$ 2)John Williams works a 42 hour week for which he is paid a basic wage of $\$ 113.40$. He works 6 hours overtime at time and a half and 4 hours at double time. Calculate his gross wage for the week. Basic hourly rate $=\frac{\$ 113.40}{42}=\$ 2.70$ Overtime rate at time and a half $=11 / 2 \times \$ 2.70=4.05$ For 6 hours at time and a half, Mr. William will earn $\$ 4.05 \times 6=\$ 24.30$ Overtime rate at double time $=2 \times \$ 2.70=\$ 5.40$ For 4 hours at double time, Mr. William will earn $\$ 5.40 \times 4=\$ 21.60$ Gross Wage $=\$ 113.40+24.30+21.60=\$ 159.30$

Trigonometry	
Cosine Rule	
Points to Remember	Illustration/ Example
When a triangle does not have a right angle, we can find the missing sides or angles using either the sine rule or the cosine rule It is used when two sides and an angle between them are given or all three sides are given	This following examples will cover how to: - Use the Cosine Rule to find unknown sides and angles - Use the Sine Rule to find unknown sides and angles - Combine trigonometry skills to solve problems $a^{2}=b^{2}+c^{2}-2 b c \cos A$ $\begin{aligned} & \mathrm{a}^{2}=5^{2}+7^{2}-2 \times 5 \times 7 \times \cos \left(49^{\circ}\right) \\ & \mathrm{a}^{2}=25+49-70 \times \cos \left(49^{\circ}\right) \\ & \mathrm{a}^{2}=74-70 \times 0.6560 \ldots \\ & \mathrm{a}^{2}=74-45.924 \ldots=28.075 \\ & \mathrm{a}=\sqrt{ } 28.075 \ldots \\ & \mathrm{a}=5.298 \ldots \\ & \mathrm{a}=\mathbf{5 . 3 0} \text { to } 2 \text { decimal places } \end{aligned}$
The Cosine Rule is very useful for solving triangles: $c^{2}=a^{2}+b^{2}-2 a b \cos (C)$	
C	
\mathbf{a}, \mathbf{b} and \mathbf{c} are sides	
\mathbf{C} is the angle opposite side c	

Trigonometry
Sine Rule

Points to Remember
 Illustration/ Example

The Sine Rule is also very useful for solving triangles:

$$
\frac{b}{\sin B}=\frac{a}{\sin A}
$$

When two angles and any side are given or when two sides and an angle not between them are given
$\frac{b}{\sin B}=\frac{a}{\sin A}$
$\frac{5}{\sin B}=\frac{5.298}{\sin 49}$
$\sin B=\left(\sin \left(49^{\circ}\right) \times 5\right) / 5.298 \ldots$
$\sin B=0.7122 \ldots$
$\mathrm{B}=\sin ^{-1}(0.7122 \ldots)$
$B=45.4^{\circ}$ to one decimal place
$\mathrm{C}=180^{\circ}-49^{\circ}-45.4^{\circ}$
$\mathrm{C}=\mathbf{8 5 . 6}$ 號 one decimal place

Trigonometry

Bearings

Points to Remember

Bearings are a measure of direction, with North taken as a reference.
If you are travelling North, your bearing is 000°, and this is usually represented as straight up on the page.
If you are travelling in any other direction, your bearing is measure clockwise from North.

Example

Look at the diagram below:

If you walk from O in the direction shown by the red arrow, you are walking on a bearing of 110°.

Use simple trigonometrical ratios as well as the sine and cosine rules to solve problems involving bearings
Presents several problems and ask students decide whether to use the sine or cosine rule, or the trigonometric ratios

Illustration/ Example

1) Find the bearings for:
(a) East (E)
(b) South (S)
(c) South-East (SE)
(a)

The bearing of E is 090°
(b)

(c)

2) J, K and L are three sea ports. A ship began its journey at J , sailed to K , then to L and returned to J .
The bearing of K from J is 054° and L is due east of K . $\mathrm{JK}=\mathrm{I} 22 \mathrm{~km}$ and $\mathrm{KL}=60 \mathrm{~km}$.
(i) Draw a clearly labelled diagram to represent the above information. Show on the diagram
a) the north/south direction
b) the bearing 054°
c) the distances 122 km and 60 km .

	(ii) Calculate a) the measure of angle JKL b) the distance JL c) the bearing of J from L (a) Required to calculate angle JKL, $\begin{aligned} \text { angle } \begin{aligned} \mathrm{JKL} & =90^{\circ}+54^{\circ} \\ & =144^{\circ} \end{aligned} .=\frac{r^{\circ}}{} \end{aligned}$ (b) $\begin{aligned} \mathrm{JL}^{2} & =\mathrm{JK}^{2}+\mathrm{KL}^{2}-2(\mathrm{JK})(\mathrm{KL}) \cos 144^{\circ} \\ & =(122)^{2}+(60)^{2}-2(122)(60) \cos 144^{\circ} \\ & =30328.008 \\ \mathrm{JL} & =\sqrt{30328.008} \\ \mathrm{JL} & =174.15 \mathrm{~km} \end{aligned}$ (c) The bearing of J from L $\begin{aligned} & \frac{122}{\sin \theta}=\frac{174.149}{\sin 144^{\circ}} \\ & \begin{aligned} \sin \theta & =\frac{122 \times \sin 144^{\circ}}{174.149} \\ \theta & =\sin ^{-1}(0.4417) \\ \theta & =24.31^{\circ} \\ \mathrm{L} & =270^{\circ}-24.31^{\circ} \\ & =245.7^{\circ} \text { to the nearest } 0.1^{\circ} \end{aligned} \end{aligned}$

Sets
 Definitions and Notation

Points to Remember

*A set is a collection of identifiable elements or members that are connected in some way

* There are two types of sets: finite and infinite
*The symbol \in is used to show that an item is an element or member of a set
* A subset is represented by the symbol: \subset and is used to present part of a set separately.
* A universal set is made up of all elements from which all subsets will be pulled and is represented by the $\operatorname{symbol} \varepsilon$ or U
* Venn Diagrams are used to represent sets and the relationship between sets (Describe each region).
* Complements of a set B are represented by B' and show members of a set that are NOT part of B.
* The intersection of two or more sets consists of those elements that are common to those sets *The union of two or more sets consists of those elements that make up those sets.

Set Notation	Description	Meaning
$A \cup B$	" A union B "	everything that is in either of the sets
$A \cap B$	"A intersect B "	only the things that are in both of the sets
A^{\prime}	" A complement" or "not $A "$	everything in the universal set outside of A
B^{\prime}	" B complement"	everything in A except for anything in its overlap with B
$(A \cup B)^{\prime}$	"not $(A$ union $B) "$	everything outside A and B
$(A \cap B)^{\prime}$	"not $(A$ intersect $B) "$ outside of the overlap of A and B	

Illustration/ Example

Examples of sets are: a collection of coins; a pack of
cards; all vowels in the English alphabet etc.
Examples of finite sets:
$\mathrm{A}=\{$ All odd numbers between 1 and 10$\}=\{3,5,7,9\}$
$\mathrm{V}=\{$ the vowels in the alphabet $\}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
Examples of infinite sets:
$\mathbf{A}=\{$ All natural numbers $\}=\{1,2,3 \ldots\}$
$B=\{$ All whole numbers $\}=\{0,1,2,3,4 \ldots\}$
Use of symbol \in :
$\{2\} \in\{1,2,3,4\}$
Use of symbol \subset :
$\{2,3\} \in\{1,2,3,4\}$
Set Notation:

Set notation	Venn diagram	Set
$A \cup B$		\{1, 2, 3\}
$A \cap B$		\{2\}
A^{\prime}		$\{3,4\}$
B^{\prime}		\{1\}
$(A \cup B) '$		\{4\}
$(A \cap B) '$		

Circle Geometry	
Circle Theorems	Illustration/ Example
Points to Remember	
The angle which an arc of a circle subtends at the	
centre of a circle is twice the angle it subtends at	
any point on the remaining part of the	
circumference.	What is the size of Angle POQ? (O is circle's center)
The angle in a semicircle is a right angle.	

Circle Geometry	
Circle Theorems	
Points to Remember	Illustration/ Example
Angles in the same segment of a circle and subtended by the same arc are equal.	What is the size of Angle CBX? Angle $\mathrm{ADB}=32^{\circ}=$ Angle ACB . Angle ACB = Angle XCB. So in triangle BXC we know Angle $\mathrm{BXC}=85^{\circ}$, and Angle $\mathrm{XCB}=32^{\circ}$ Now use sum of angles of a triangle equals 180° : Angle CBX + Angle BXC + Angle XCB $=180^{\circ}$ Angle CBX $+85^{\circ}+32^{\circ}=180^{\circ}$ Angle CBX $=63^{\circ}$
The line joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.	Given that OQ is perpendicular to PR and $P R=8$ units, determine the value of x $\mathrm{PQ}=\mathrm{QR}=4$ (perpendicular from centre bisects chord) In $\triangle O Q P$: $\begin{array}{rlr} P Q & =4 & \\ O P^{2} & =O Q^{2}+Q P^{2} & \text { (Pythagoras) } \\ 5^{2} & =x^{2}+4^{2} & \\ \therefore x^{2} & =25-16 & \\ x^{2} & =9 & \\ x & =3 & \end{array}$

| Circle Geometry |
| :--- | :--- |
| Circle Theorems |
| Points to Remember |
| The opposite angles of a cyclic quadrilateral are |
| supplementary |
| Illustration/ Example |
| What is the size of Angle WXY? |
| The 180° |
| The exterior angle of a cyclic quadrilateral is equal |
| to the interior opposite angle i.e. $\angle A D E=\angle A B C$ |

Circle Geometry	Illustration/ Example
Circle Theorems	Calculate the unknown length.
Points to Remember	
The lengths of two tangents from an external point to	
the points of contact on the circle are equal.	
This is a right angled triangle because a tangent of a circle is	
perpendicular to the radius of that circle at the point of	
contact. Therefore, use Pythagoras' theorem	
$?^{2}=10.9^{2}-9.1^{2}=118.81-82.81=36$	
$?=6.0$	

Symmetry	
Lines of Symmetry	
Points to Remember	Illustration/ Example
Definition: - A line of symmetry is an imaginary line that can divide an object in equal opposite parts. The line of symmetry is also called the 'mirror line'; it can be horizontal, vertical or at any angle. - Some shapes have no lines of symmetry; - A circle has an infinite number of lines of symmetry. A square has 4 lines of symmetry	Identify and determine the number of lines of symmetry in the following shapes: a) Kite b) Rectangle c) Triangle A kite has 1 line of symmetry

| Symmetry |
| :--- | :--- | :--- | :--- |
| Lines of Symmetry |
| Points to Remember |
| Non-example |
| The scalene triangle does not have any lines of |
| symmetry. |

Transformations	
Translation	
Points to Remember	Illustration/ Example
* In a translation, all points in a line or object are changed in the same direction so there is no change in shape Translate 4 Units Right:	The points $\mathrm{A}(2,4), \mathrm{B}(4,4), \mathrm{C}(5,2), \mathrm{D}(2,1)$ were translated under $\binom{7}{-3}$. Find the image $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ $\mathrm{A}^{\prime}(-5,1), \mathrm{B}^{\prime}(-3,1),(-2,-1),(-5,-2)$

Transformations	
Reflection	
Points to Remember	Illustration/ Example
	Reflect the points $\mathrm{A}(1,2), \mathrm{B}(1,5)$ and $\mathrm{C}(3,2)$ on the line $\mathrm{y}=1$
	${ }_{5}{ }^{\text {B }}$
	$\square 4_{4}$
	3.
	2- ${ }^{2} \square_{C}$
	- 2.
	-3, ${ }_{8}$
	${ }_{4}{ }^{\text {B }}$
	Reflect the points $\mathrm{A}(1,2), \mathrm{B}(1,5)$ and $\mathrm{C}(3,2)$ on the line $\mathrm{y}=\mathrm{x}$
	$5^{\text {B }}$
	4.
	3.0
	A, ${ }^{\text {c }}$ c
	$\cdots-4{ }^{-5}$
	.$^{-}$
	,$^{\prime} \quad 4-\square \square \square$
	Reflect the points $\mathrm{A}(1,2), \mathrm{B}(1,5)$ and $\mathrm{C}(3,2)$ in the line $\mathrm{y}=-\mathrm{x}$
	¢ в \square
	${ }_{4}$ - \square
	3.
	$\because \square_{1}^{2}{ }^{\text {a }}$
	$\xrightarrow{-}$

Transformations
 Rotation

Points to Remember

*A rotation is a transformation that turns a figure about a fixed point called a centre of rotation. A rotation has a centre and an angle. The angle is measured in an anticlockwise direction.

1. Pick a point B on the shape pre-transformation and locate the respective point posttransformation B^{\prime}.
2. Draw line BB' .
3. Locate the midpoint M of B and B^{\prime}.
4. Draw a perpendicular bisector (intersecting BB' at a right angle at M).
5. Repeat steps 1-4 for a second point C.
6. Extend the perpendicular bisectors (if necessary) so that they intersect.(Since perpendicular bisectors intersect the center of a circle, and since the circle containing B and B' and the circle containing C and C^{\prime} ' are both centered at the center of rotation), the intersection of the two perpendicular bisectors is the center of rotation.

Illustration/ Example

Draw a triangle ABC on the graph paper. The coordinate of A, B and C being $A(1,2), B(3,1)$ and $C(2,-2)$, find the new position when the triangle is rotated through 90° anticlockwise about the origin

A $(1,2)$ will become $\mathrm{A}^{\prime}(-2,1)$
B $(3,1)$ will become $\mathrm{B}^{\prime}(-1,3)$
C $(2,-2)$ will become $\mathrm{C}^{\prime}(2,2)$
Thus, the new position of $\Delta \mathrm{ABC}$ is $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$

Describe fully the rotation with image shape A and object shape B.

Solution: Rotation, $\mathbf{2 7 0}^{\circ}$, anti-clockwise rotation, centre (-2,2)

Transformations
Enlargement
Points to Remember
* An enlargement is a transformation that changes the size of a figure
What is a scale factor?
Enlarging a shape by a positive scale factor means changing the size of a shape by a scale factor from a particular point, which is called the centre of enlargement.

Transformations

Enlargement

Points to Remember
Negative Scale Factors
An enlargement using a negative scale factor is

Illustration/ Example

Negative Scale Factors
Enlarge the rectangle $\mathbf{W X Y Z}$ using a scale factor of - 2, centred about the origin.

The scale factor is -2 , so multiply all the coordinates by -2 . So OW' is 2OW. This time we extend the line WO beyond O , before plotting W '.

In a similar way, we extend XO, YO and ZO and plot $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$ and Z^{\prime}. Can you see that the image has been turned upside down?

Transformations	
Glide-Reflection	
Points to Remember	Illustration/ Example
When a translation (a slide or glide) and a reflection are performed one after the other, a transformation called a glide reflection is produced. In a glide reflection, the line of reflection is parallel to the direction of the translation. It does not matter whether you glide first and then reflect, or reflect first and then glide. This transformation is commutative. $\Delta A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under a glide reflection that is a composition of a reflection over the line l and a translation through the vector v.	Examine the graph below. Is triangle A"B"C" a glide reflection of triangle ABC ? Answer: Yes, Triangle ABC is reflected on the x -axis to $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and then translated through 5 places to the left or $\binom{-5}{0}$

Vectors	
Scalar Quantities	Illustration/ Example
Points to Remember	Five some real life examples of scalar quantities:
*Scalars are quantities that only have a magnitude,	Give meaning they can be expressed with just a number. Answer: Height of a building, time taken for a trip, There are absolutely no directional components in a scalar quantity - only the magnitude of the medium temperature outside, an avocado on the scale reading 87.9 grams,
e.g.	
Time - the measurement of years, months, weeks,	
days, hours, minutes, seconds, and even	
milliseconds;	
Volume - tons to ounces to grams, milliliters and	
micrograms	
Speed and - speed in miles or kilometers-per-hour,	
temperature	

Vectors				
Vector Quantities				
Points to Remember	Illustration/ Example			
A vector has magnitude (how long it is) and direction:	Give some real life examples of vector quantities: 10 meters to the left of the tree.			
divection magnitude				
The length of the line shows its magnitude and the				
arrowhead points in the direction.				
e.g. Increase/Decrease in Temperature, Velocity				

Vectors	
Vector Representation	
Points to Remember	Illustration/ Example
	Represent the diagram below in vector form: This vector can be written as: $\overrightarrow{A B}, \mathbf{a}$, or $\binom{3}{4}$

Vectors

Magnitude of a vector	
Points to Remember	Illustration/ Example
*The magnitude of a vector is shown by two vertical bars on either side of the vector: $\|\mathrm{a}\|$ We use Pythagoras' Theorem to calculate it: $\quad\|\mathbf{a}\|=\sqrt{x^{2}+y^{2}}$	1) What is the magnitude of the vector $\mathbf{b}=\binom{\mathbf{6}}{\mathbf{8}}$
	$\|\mathbf{b}\|=\sqrt{ }\left(6^{2}+8^{2}\right)=\sqrt{ }(36+64)=\sqrt{ } 100=10$

Vectors	
Parallel Vectors	
Points to Remember	Illustration/ Example
One can use vectors to solve problems in Geometry e.g. to prove that two vectors are parallel. Two vectors are parallel if they have the same direction To prove that two vectors are parallel: If two vectors \vec{u} and \vec{v} are parallel, then one is a simple ratio of the other, or one is a multiple of the other $\vec{v}=k \vec{u}$	In the triangle ABC the points X and Y are the midpoints of $A B$ and $A C$. Show that XY and BC are parallel. $\begin{aligned} \overrightarrow{X Y} & =\overrightarrow{X A}+\overrightarrow{A Y} \\ & =\mathbf{- a}+\mathbf{b} \\ & =\mathbf{b}-\mathbf{a} \end{aligned}$ $\begin{aligned} \overrightarrow{B C} & =\overrightarrow{B A}+\overrightarrow{A C} \\ & =-2 \mathbf{a}+2 \mathbf{b} \\ & =2 \mathbf{b}-2 \mathbf{a} \\ & =\mathbf{2}(\mathbf{b}-\mathbf{a}) \end{aligned}$

This implies that one vector is a simple ratio of the other:
$\frac{\overrightarrow{X Y}}{\overline{B C}}=\frac{b-a}{2(b-a)}=\frac{1}{2}$
i.e. $\overrightarrow{X Y}: \overrightarrow{B C}=1: 2$

OR one is a scalar multiple of the other (cross multiply)
$\overrightarrow{B C}=2 \overrightarrow{X Y}$ or $\overrightarrow{X Y}=\frac{1}{2} \overrightarrow{B C}$
Hence, $X Y$ is parallel to $B C$ and half its length.

Vectors	
Collinear Vectors	
Points to Remember	Illustration/ Example
Points that lie on the same line are called collinear points. To prove that two vectors are collinear: If two vectors are collinear, then one is a simple ratio of the other, or one is a multiple of the other $\vec{v}=k \vec{u}$ and they have a common point.	The position vectors of points P, Q and R are vectors $a+b, 4 a-b$ and $10 a-5 b$ respectively. Prove that P, Q and R are collinear. $\begin{aligned} \overrightarrow{P Q} & =\overrightarrow{P O}+\overrightarrow{O Q} \\ & =(-\mathbf{a}-\mathbf{b})+(4 \mathbf{a}-\mathbf{b}) \\ & =3 \mathbf{a}-2 \mathbf{b} \\ \overrightarrow{Q R} & =\overrightarrow{Q O}+\overrightarrow{O R} \\ & =(-4 \mathrm{a}+\mathrm{b})+(10 \mathrm{a}-5 \mathrm{~b}) \\ & =6 \mathrm{a}-4 \mathrm{~b} \\ & =2(3 \mathbf{a}-2 \mathbf{b}) \end{aligned}$ This implies that one vector is a simple ratio of the other and they have a common point Q $\begin{aligned} & \frac{\overrightarrow{P Q}}{\overrightarrow{Q R}}=\frac{3 a-2 b}{2(3 a-2 b)}=\frac{1}{2} \\ & \text { i.e. } \overrightarrow{P Q}: \overrightarrow{Q R}=1: 2 \end{aligned}$ OR one is a scalar multiple of the other (cross multiply) $\overrightarrow{Q R}=2 \overrightarrow{P Q} \text { or } \overrightarrow{P Q}=\frac{1}{2} \overrightarrow{Q R}$ Since $\overrightarrow{Q R}=2 \overrightarrow{P Q}$ and they have a common point Q, then P, Q and R are collinear.

Matrices
Introduction to Matrices
Points to Remember
* A matrix is an ordered set of numbers listed in
rectangular form and enclosed in curved brackets. It is
usual to denote matrices in capital letters
* In defining the ORDER of a matrix, the number of
rows is always stated first and then the number of
columns.
* There are different types of matrices such as square
matrices, diagonal matrices and identity matrices.

Row Matrix- A row matrix is formed by a single row e.g. (a $\quad \mathrm{b} \quad \mathrm{c})$

Column Matrix- A column matrix is formed by a single column e.g. $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

Rectangular Matrix- A rectangular matrix is formed by a different number of rows and columns, and its dimension is noted as: $\mathbf{m x n} \quad$ e.g. $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ is 3×2

Square Matrix - A square matrix is formed by the same number of rows and columns e.g $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is 2×2

Diagonal Matrix - In a diagonal matrix, all the elements above and below the diagonal are zeroes e.g.

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

Identity Matrix-An identity matrix is a diagonal matrix in which the diagonal elements are equal to 1

$$
\text { e.g. }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Singular matrix- see topic on Inverse Singular below
A zero or null matrix is a matrix with 0 as the element for all its cells (rows and columns).

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Illustration/ Example

Examples

1) ($2-3-3$) is a 1×3 row matrix
2) $\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$ is a 3×1 column matrix
3) $\left(\begin{array}{lll}5 & 7 & 9 \\ 3 & 2 & 5\end{array}\right)$ is a 2×3 rectangular matrix
4) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ is a 2×2 square matrix
5) $\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8\end{array}\right)$ is a diagonal Matrix
6) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is an identity matrix
7) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ is the zero or null matrix

Matrices
 Addition and Subtraction of Matrices

Points to Remember
Two matrices may be added or subtracted provided they are of the SAME ORDER. Addition is done by adding the corresponding elements of each of the two matrices.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)
$$

Illustration/ Example

Examples:

1) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)+\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)=\left(\begin{array}{cc}6 & 8 \\ 10 & 12\end{array}\right)$
2) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)-\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)=\left(\begin{array}{ll}-4 & -4 \\ -4 & -4\end{array}\right)$

Matrices

Multiplication of Matrices

Points to Remember

Multiplication is only possible if the row vector and the column vector have the same number of elements. To multiply the row by the column, one multiplies corresponding elements, then adds the results

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{I}{S}=\binom{a I+b S}{c I+d S}
$$

Also,
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)=\left(\begin{array}{ll}(a e+b g) & (a f+b h) \\ (c e+d g) & (c f+d h)\end{array}\right)$

Illustration/ Example

Examples:

1) $2\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 8 & 4\end{array}\right)$
2) $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)=(1 \times 4)+(2 \times 5)+(3 \times 6)=(22)$

A 1×3 matrix multiplied by a 3×1 matrix gives a 1×1 matrix
3) $\left(\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right)\left(\begin{array}{cc}-2 & 3 \\ 4 & -1\end{array}\right)$

$$
=\left(\begin{array}{cc}
(2 \times-2+1 \times 4) & (2 \times 3+1 \times-1) \\
(3 \times-2+5 \times 4) & (3 \times 3+5 \times-1)
\end{array}\right)=\left(\begin{array}{cc}
0 & 5 \\
14 & 4
\end{array}\right)
$$

A 2×2 matrix multiplied by a 2×2 matrix gives a 2×2 matrix

Matrices	
Inverse of a Matrix	
Points to Remember	Illustration/ Example
$\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]$	$\begin{aligned} & \text { If } \mathrm{A}=\left(\begin{array}{ll} 3 & 1 \\ 4 & 2 \end{array}\right) \text {, find } \mathrm{A}^{-1} \\ & \mathrm{~A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) \end{aligned}$
Then the inverse is $\mathrm{A}^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}}\left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$	$=\frac{1}{(3)(2)-(1 \times 4)}\left(\begin{array}{cc} 2 & -1 \\ -4 & 3 \end{array}\right)=\frac{1}{2}\left(\begin{array}{cc} 2 & -1 \\ -4 & 3 \end{array}\right)$
and the determinant is $\operatorname{det} \mathrm{A}=\|\mathrm{A}\|=\mathrm{ad}-\mathrm{bc}$	$=\left(\begin{array}{cc} 1 & -1 / 2 \\ -2 & 3 / 2 \end{array}\right)$

Matrices	
Singular Matrix	
Points to Remember	Illustration/ Example
A singular matrix is a square matrix that has no inverse	Determine if the matrix $A=\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)$ is singular Det A $=\mathrm{ad}-\mathrm{bc}=(2)(3)-(6)(1)$
A matrix is singular if and only if its determinant is zero i.e. $a d-b c=0$	$\begin{aligned} & =6-6 \\ & =0 \end{aligned}$
If the determinant of a matrix is 0 , the matrix has no inverse	

Matrices	
Simultaneous Equations	
Points to Remember	Illustration/ Example
One of the most important applications of matrices is to the solution of linear simultaneous equations	Solve the simultaneous equation using a matrix method $\begin{gathered} x+2 y=4 \\ 3 x-5 y=1 \end{gathered}$ This can be written in matrix form $\mathrm{AX}=\mathrm{B}$:

Matrices

Transformational matrices

Points to Remember

$\mathrm{R}=90^{\circ}$ rotation about the origin, given the matrix. This transformation matrix rotates the point matrix 90 degrees anti-clockwise. When multiplying by this matrix, the point matrix is rotated 90 degrees anticlockwise around (0,0).

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$\mathrm{S}=180^{\circ}$ anticlockwise rotation about the origin, given the matrix. This transformation matrix creates a rotation of 180 degrees. When multiplying by this matrix, the point matrix is rotated 180 degrees around $(0,0)$. This changes the sign of both the x and y coordinates.

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

$\mathrm{T}=270^{\circ}$ rotation about the origin, given the matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

$\mathrm{I}=360^{\circ}$ rotation about the origin, given the matrix. This transformation matrix is the identity matrix. When multiplying by this matrix, the point matrix is unaffected and the new matrix is exactly the same as the point matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$\mathrm{X}=$ reflection on x axis, given the matrix. This transformation matrix creates a reflection in the x -axis. When multiplying by this matrix, the x co-ordinate remains unchanged, but the y co-ordinate changes sign

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$\mathrm{Y}=$ reflection on y axis, given the matrix This transformation matrix creates a reflection in the y-axis. When multiplying by this matrix, the y co-ordinate remains unchanged, but the x co-ordinate changes sign

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

$\mathrm{W}=$ reflection on $\mathrm{y}=\mathrm{x}$, given the matrix. This transformation matrix creates a reflection in the line

Illustration/ Example

$\mathrm{R}=90^{\circ}$ anti-clockwise rotation about the origin

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{4}{3}=\binom{\left(\begin{array}{lll}
0 & x & 4
\end{array}\right)+\left(\begin{array}{lll}
-1 & x & 3
\end{array}\right)}{\left(\begin{array}{lll}
1 & x & 4
\end{array}\right)+\left(\begin{array}{lll}
0 & x & 3
\end{array}\right)}=\binom{-3}{4}
$$

$\mathrm{S}=180^{\circ}$ anti-clockwise rotation about the origin

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{4}{3}=\left(\begin{array}{cc}
(-4 \times 1)+ & (3 \times 0) \\
(4 \times 0)+ & (3 \times-1)
\end{array}\right)=\binom{-4}{-3}
$$

$\mathrm{T}=270^{\circ}$ anti-clockwise rotation about the origin

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{4}{3}=\left(\begin{array}{cc}
(4 \times 0)+ & (3 \times 1) \\
(4 \times-1)+ & (3 \times 0)
\end{array}\right)=\binom{3}{-4}
$$

$\mathrm{I}=$ Identity Matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{4}{3}=\binom{(4 \times 1)+(3 \times 0)}{(4 \times 0)+(3 \times 1)}=\binom{4}{3}
$$

$\mathrm{X}=$ Reflection on x axis

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{4}{3}=\binom{(4 \times 1)+(3 \times 0)}{(4 \times 0)+(3 \times-1)}=\binom{4}{-3}
$$

$\mathrm{Y}=$ Reflection on y axis

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{4}{3}=\binom{(4 \times-1)+(3 \times 0)}{(4 \times 0)+(3 \times 1)}=\binom{-4}{3}
$$

$\mathrm{W}=$ reflection on $\mathrm{y}=\mathrm{x}$

Matrices	
Transformational matrices	
Points to Remember	Illustration/ Example
$y=x$. When multiplying by this matrix, the x coordinate becomes the y co-ordinate and the y-ordinate becomes the x co-ordinate. $\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)\binom{4}{3}=\binom{\left(\begin{array}{lll} 4 & \times & 0 \end{array}\right)+\left(\begin{array}{l} 1 \times 3 \end{array}\right)}{(1 \times 4)+(0 \times 3}=\binom{3}{4}$
Reflection on $y=-x$, given the matrix. This transformation matrix creates a reflection in the line $y=-x$. When multiplying by this matrix, the point matrix is reflected in the line $y=-x$ changing the signs of both co-ordinates and swapping their values. $\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)$	Reflection on $\mathrm{y}=-\mathrm{x}$,

Index
Number Theory 1
Basic Rules 1
Positive and Negative Numbers 2
Decimals - Rounding 2
Operations with Decimals 3
Significant figures 4
Binary Numbers 4
Computation - Fractions 5
Prime Numbers 5
Computation of Decimals, Fractions and Percentages 6
Triangles 7
Classification of Triangles 7
Pythagoras' Theorem 9
Similar Triangles \& Congruent Triangles 9
Mensuration 12
Areas \& Perimeters 12
Surface Area and Volumes 15
Geometry 19
Sum of all interior angles of a regular polygon 19
Sum of all interior angles of any polygon 20
Sum of all exterior angles of any polygon 21
Circle Geometry 22
Algebra 24
Simplifying algebraic expressions 24
Substitution 24
Binary Operations 25
Solving Linear Equations 25
Linear Inequalities 26
Changing the Subject of a Formula 26
Solving Simultaneous Equations (both Linear) 28
Solving Simultaneous Equations (Linear and Quadratic) 29
Indices 30
Product of two brackets 31
Factorization of Simple expressions 31
Solving quadratic inequalities 32
Relations, Functions and Graphs 33
Relations and Functions 33
Relations, Functions and Graphs 34
Composite Functions \& Inverses 34
Introduction to Graphs 36
Non-Linear Relations 39
Direct \& Inverse Variation 40
Coordinate Geometry 41
Linear Programming 43
Distance - Time Graphs 44
Velocity - Time Graphs 45
Statistics 47
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph 47
Frequency Distribution 49
Displaying data on the Bar Graph 49
Measure of Central Tendency - Mean, Median and Mode 49
Cumulative Frequency Curve (Ogive) 53
Interquartile Range and Semi-Interquartile Range 53
Consumer Arithmetic 54
Ready Reckoner 54
Foreign Exchange Rates 55
Hire Purchase 55
Profit, Loss, Discount 56
Simple Interest 57
Compound Interest 57
Mortgages 58
Rates and Taxes 58
Wages 59
Trigonometry 60
Cosine Rule 60
Sine Rule 60
Bearings 61
Sets 63
Definitions and Notation 63
Circle Geometry 64
Circle Theorems 64
Symmetry 67
Lines of Symmetry 67
Transformations 69
Translation 69
Reflection 70
Rotation. 72
Enlargement 73
Glide-Reflection 75
Vectors 75
Scalar Quantities 75
Vector Quantities 76
Vector Representation 76
Product of a Vector and a Scalar 77
Position Vector 77
Addition and Subtraction of Vectors 78
Magnitude of a vector 79
Parallel Vectors 79
Collinear Vectors 80
Matrices 81
Introduction to Matrices 81
Addition and Subtraction of Matrices 82
Multiplication of Matrices 82
Inverse of a Matrix 82
Singular Matrix 83
Simultaneous Equations 83
Transformational matrices 84
Combining Transformations 85

